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Abstract—A charged conducting particle near a conducting plane experiences a force that

draws it toward the plane. When the particle is far away, the force depends only on the net charge

and separation. As the particle approaches, however, the force will also depend on the size of the

particle, and whether it is held at constant charge or constant potential. The exact formulas for

these forces are quite complicated, but their results can be approximated within a few percent by

relatively simple expressions that are much more useful for practical work. These formulas are

given and compared to earlier, less accurate approximations.

I. INTRODUCTION

The force on a charged particle near a wall plays a key role in many applications of electrostat-

ics. Xerographic copiers and printers, for example, depend heavily on electrostatic attraction

and adhesion to develop and transfer images [1]. A more unpleasant effect is the adhesion of

dust to sensitive solar panels, which has been cited as a major problem for unmanned missions

to Mars [2]. Another area of concern involves the behavior of microscopic tips near a flat

surface, as might occur in the operation of atomic force microscopes or in MEMS devices. In

these applications, the voltage, rather than the charge, is usually constrained.

A common way to model these situations is to consider the interaction between a sphere

and a flat plane. With this situation, it is possible to obtain an analytical solution for the

electrostatic fields using either the method of images or separation of variables. Both methods

reduce to simple formulas that are accurate when the sphere is far from the wall. Close to

the wall, however, the solutions are infinite series of terms that converge very slowly, often

requiring thousands or even millions of terms to obtain an accurate solution.

To avoid the complex calculations, and to provide formulas that are easy to use in practical

engineering, several approximations have been put forth in the past. These are usually based

on the results that are valid when the sphere is far from the wall. The basic formulas for this

case are, for the capacitance of an isolated sphere of radius R in a dielectric medium with
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permittivity ε .

C∞ = 4πεR (1)

and for the force, using the method of images

F∞ =
Q2

16πεh2
=

πεR2V 2

h2
(2)

The two expressions for force give the same result, but are individually useful when either the

charge or the voltage on the sphere is constrained. Their equivalence is apparent if the relation

between charge and voltage, Q = CV , is substituted.

These approximations are based on a point charge, but it is well known that the charge

on a conductive sphere is distributed around its surface, and can move in response to external

objects. To make these formulas more accurate when the sphere is close to the wall, the equiv-

alent point charge is usually placed somewhere on or inside the sphere. Although this helps

somewhat, it is not possible to account for the forces when the sphere separation is on the order

of its radius or less, as will be shown in this article.

As an alternate to these ad-hoc corrections, the exact field solutions will be used to calculate

the capacitance and force for the sphere at any distance from the wall. Although they require a

very long summation, they will be approximated in this article by simple formulas that should

be adequate for most engineering and design work.

II. DESCRIPTION

A sphere near a wall can be represented directly in the bispherical coordinate system shown in

Figure 1. In this system, the surfaces of constant η represent spheres centered on the z-axis.

The surface η = 0 represents the horizontal x-y plane (or a sphere with infinite radius). As η
increases, the spheres become smaller and farther from the wall. Surfaces of constant θ are

perpendicular to the spheres, and serve as the coordinate to locate a position on the sphere or

wall.

The relation between the rectangular and bispherical coordinate systems is given as [3]

x =
a sinθ cosψ

coshη − cosθ

y =
a sinθ sinψ

coshη − cosθ

z =
a sinhη

coshη − cosθ

(3)

where ψ is the angle around the z-axis, and a is a constant related to the scale of the coordi-

nates. Using these relations allows us to relate the size and spacing of any sphere to its bipolar

coordinates. In particular, for the spherical conductor at η = η0, we find that the constant a is

given by

a = Rsinhη0 (4)

and the spacing from the sphere to ground is

h =
asinhη0

coshη0 +1
=

Rsinh2 η0

coshη0 +1
= R(coshη0 +1) (5)
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Fig. 1. Definition of the bipolar geometry for a sphere near a plane wall

Solving these equations gives the coordinate of the spherical conductor as

η0 = acosh(1+h/R) = acosh(1+ξ ) (6)

The ratio ξ = h/R is a single parameter that describes the spacing relative to the size of the

conductive sphere.

Integrals and derivatives in the bipolar coordinate system require a knowledge of the metric

coefficients that account for the curvature of the coordinate surfaces. These coefficients are

given by

gθθ =
(Rsinhη0)

2

(cosh η − cos θ)2

gψψ =
(Rsinhη0)

2 sin2 θ

(cosh η − cos θ)2

(7)

and will be used later in calculations of charge and electric fields.

III. FORCE ON THE SPHERE

Both the sphere and the wall are conductors, and the space between them is insulative, so we

can use energy functions to find the force on the sphere, as described in standard references

[4, 5]. As the sphere moves, two limiting cases can be distinguished. In one, the voltage on

the sphere remains constant, which would occur if an electrical connection was maintained

between the sphere and an external voltage source. In the other case, the total charge on the

sphere remains constant, corresponding to an isolated charged particle. The force expressions

for these two cases are different.
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A. Force for constant voltage

If the voltage on the sphere is constant during its motion, the appropriate force expression is

given by

FV =
dW ′

dh

∣

∣

∣

∣

v

=
1

R

dW ′

dξ

∣

∣

∣

∣

v

(8)

using the definition of ξ = h/R. The energy function required here is the electrostatic coenergy,

W ′, given by

W ′ =
1

2
CV 2 (9)

where C is the capacitance between the sphere and the wall, which varies with the size and

spacing of the sphere.

The derivative is taken while the voltage is held constant, so the force on the sphere is given

by

FV =
V 2

2R

dC

dξ
(10)

Thus to find this force, we must first find the capacitance as a function of spacing.

B. Force for constant charge

The second case requires a different force expression, given by

FQ = − dW

dh

∣

∣

∣

∣

q

= − 1

R

dW

dξ

∣

∣

∣

∣

q

(11)

Here the appropriate energy function is the electrostatic energy, W , which is written as

W =
Q2

2C
(12)

In this case, the derivative is taken while the charge is held constant, so only the variation

in capacitance is needed. The force is then given by

FQ =
Q2

2RC2

dC

dξ
(13)

Notice that this force expression has a different form, since the capacitance appears in the

denominator as well as in the derivative. This difference guarantees that the force will behave

differently for isolated and connected spheres.

IV. CAPACITANCE

For both force expressions, the capacitance must be known as a function of spacing between

sphere and wall. Since the capacitance is defined as

C =
Q

V
(14)
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we need only find the charge on the sphere as a function of its voltage. The charge within any

surface of constant η is given by Gauss’ Law as an integral over the entire surface

Q = ©
∫∫

εEη
√

gθθ gψψ dθdψ (15)

where Eη is the normal electric field out of the surface.

Since there is no charge in the space between the sphere and the wall, the integral surface

can be placed anywhere between them. It is perhaps simplest to choose the surface at the

ground plane (η = 0). In this case the charge integral becomes, after substituting the values of

the metric coefficients from Equation 7.

Q = −2πεR2 sinh2 η0

∫ π

0
EG(θ)

sinθ

(cosh η − cos θ)2
dθ (16)

where EG is the normal electric field along the ground. The minus sign appears because the

field is defined on inner side of surface enclosing the sphere

A. Electric field

The electric field on the grounded wall can be obtained by solving the electrostatic field equa-

tions in the bispherical coordinate system to obtain the potential, and then differentiating. The

potentials on the wall and the sphere are given by

Φ(η = 0, θ) = 0

Φ(η = η0, θ) = V
(17)

In addition, the potential is independent of the angle ψ due to symmetry around the z-axis, and

must have the same value if θ wraps around,

Φ(θ) = Φ(θ ±2π) (18)

Under these conditions, the potential can be solved by separation of variables [3] to give

an infinite series of the form

Φ(η ,θ) = V
∞

∑
n=0

φn(η ,θ) (19)

where

φn(η ,θ) =
2
√

2

e(1+2n)η0 −1

√

coshη − cosθ Pn(cosθ) sinh [(n+1/2)η ] (20)

is the nth term in the series. In this and the following work, a lower case version of a variable

indicates that it is dimensionless, and normalized to the situation in which the sphere is very

far from the wall.

In bispherical coordinates, the electric field is given by

Eη = −coshη − cosθ

Rsinhη0

∂Φ

∂η
(21)
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Substituting the solution for the potential and evaluating on the ground plane gives the electric

field there as

EG(θ) = −
√

2V

R
(1− cosθ)3/2

csch(η0)
∞

∑
n=0

(1+2n)Pn(cosθ)

e(1+2n)η0 −1
(22)

Substituting this field expression into Equation 16 gived the total charge as

Q =
∞

∑
n=0

Qn (23)

where the nth charge term is

Qn = 2
√

2πεRV
(1+2n)sinhη0

eη0+2η0 n −1

∫ π

0

Pn(cosθ) sinθ

(1− cos θ)1/2
dθ (24)

After carrying out the integrals, simplifying, and dividing by V we get the capacitance of

the sphere near the wall as

C = 4πεR
∞

∑
n=0

cn (25)

where

cn =
2sinhη0

e(1+2n)η0 −1
(26)

It is often more convenient to express the capacitance in terms of physical quantities like

the size and spacing of the sphere. The only variable in the capacitance term is η0, which can

be expressed in terms of ξ , the ratio of spacing to radius, by using Equation 6 to replace η0,

giving

cn(ξ ) =
2
√

ξ (2+ξ )

e(1+2n) acosh(1+ξ ) −1
(27)

B. Limits and approximations

Limit of a distant sphere

When the sphere is very far away compared to its size (ξ → ∞ or η0 → ∞), the terms simplify.

The 0th term is

c0(η0) =
2sinhη0

eη0 −1
(28)

and in limit of large η0 (isolated sphere) it becomes

c0(η0 → ∞) =
2(1/2)eη0

eη0
= 1 (29)

Under the same conditions, all the higher order terms approach zero,

cn(η0 → ∞) =
1

e2nη0
→ 0 (30)
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Fig. 2. Partial sums of the normalized capacitance increase as the number of terms increases, but eventu-

ally reach a limit (ξ = 0.001).

as a result of the term e2nη0 in the denominator. In the limit of a distant sphere, therefore, the

capacitance approaches the value for an isolated sphere, as it should.

Note that the convergence depends on the exponential term in the denominator becoming

large, which implies that nη0 ≫ 1. When the sphere is very close to the wall, η0 → 0, and

the terms will not decrease in value until n ≫ 1/η0. This slow convergence at close spacing is

the main problem in using traditional methods for studying the electrostatics of a sphere near

a wall.

Arbitrary spacing

Although the sum converges slowly, it does in fact converge. Figure 2 shows the successive

values for the normalized capacitance for the case where ξ = h/R = 0.001 as the number of

terms is increased from the 0th to include up to n = 100. Each additional term adds to the sum,

but in decreasing amounts, until finally the sum appears to level off at a limiting value. Thus a

few terms gives good accuracy when the sphere is far from the wall, but many more are needed

when it is close.

In the work described here, the required number of terms for good accuracy was determined

by comparing successively longer sums. If an increase in the number of terms by 50% did not

change the calculated capacitance by 0.01%, the sum was considered converged. This test was

performed on the fly for each value of ξ , and required up to 106 terms for some points at very

close spacing.

A plot of the capacitance as a function of ξ is shown in Figure 3. When the sphere is

far from the wall, the capacitance approaches unity (the isolated sphere limit), and it increases

as the sphere moves closer. Note that the increase is rather slow, taking 8 decades in spacing

(h/R) to increase by a factor of 10.
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Fig. 3. Capacitance increases slowly as the sphere approaches the wall. Both exact and approximate

expressions are shown.

Approximate expression

An analytical expression that involves a million-term sum is not convenient for everyday use,

so simpler expressions for the capacitance were investigated. After some trial and error us-

ing various fitting functions, it was discovered that the capacitance could be described fairly

accurately by an expression of the form

C̃ = 4πεRc̃ (31)

where the normalized approximate capacitance is

c̃ = 1+
1

2
log(1+1/ξ ) (32)

where the tilde indicates that this is an approximation to the actual value. The approximate

function is also plotted in Figure 3, where it is clear that it is a very good approximation to the

more series expression.

It is easier to see the agreement between the two functions by plotting the difference be-

tween them, normalized to the correct value (c̃− c)/c versus the spacing, as in Figure 4. The

error is very small when the spacing is large, and also when the spacing is very small. The

largest errors are found in the mid-range of spacing, but are no more than about 2%, even at

the worst. This appears to be an acceptable level for routine engineering calculations.

V. FORCE FOR CONSTANT VOLTAGE

Now that the capcitance has been determined as a function of spacing, we can proceed with

evaluating the force expressions for constant voltage and constant charge.
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Fig. 4. Fractional error of the approximation to the capacitance

A. Force expressions

When its voltage is held constant, the force on the sphere is given by substitution the capaci-

tance into Equation 10 to obtain

Fv = 2πεV 2 dc

dξ
(33)

or normalizing to the force when the sphere is very distant

FV = πεRV 2 fV (34)

where the normalized force is

fV = 2
d

dξ

∞

∑
n=0

cn =
∞

∑
n=0

d

dξ

(

2
√

ξ (2+ξ )

e(1+2n) acosh(1+ξ ) −1

)

(35)

Carrying out the differentiations for each term gives the normalized force as

fV = −2
∞

∑
n=0

1+ξ + e(1+2n) acosh(1+ξ )
(

−1−ξ +(1+2n)
√

ξ
√

2+ξ
)

(

−1+ e(1+2n) acosh(1+ξ )
)2√

ξ
√

2+ξ
(36)

B. Limit of a distant sphere

When the sphere is far from the wall, the force expression can be expanded in terms of the

spacing as

f v =
1

ξ 2
− 1

ξ 3
+

3

4ξ 4
− 25

16ξ 6
+O

(

1

ξ

)
13
2

(37)

The leading term gives an inverse square law for force, as expected. The next term is negative,

indicating that the force will not increase as strongly as the sphere is moved closer.
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Fig. 5. Force on a sphere at constant voltage increases more slowly near the wall. Both exact and

approximate formulas are shown.

C. Arbitrary spacing

The force for constant voltage is plotted over a wide range of spacings in Figure 5. As with

the capacitance, a large number of terms must be considered when the gap is small, and the

convergence test described above for capacitance was also used for this and the following force

calculations.

As the sphere approaches, the force increases, but not as fast as for an inverse square

law. Examination of the curve indicates that the increase is proportional to the inverse of the

spacing.

D. Approximate expression

A simpler approximate expression for the force can be constructed by using the approximation

to the capacitance (Equation 32) instead of the infinite series. In this case, the approximate

force is given by

f̃ = 2
dc̃

dξ
= 2

d

dξ
[1+1/2log(1+1/ξ )] =

1

ξ +ξ 2
(38)

For large spacing, this expression approaches the inverse square form, just as the exact formula

does. At close spacing, it approaches the reciprocal of the spacing, which agrees with the

apparent behavior of the exact sum.

The approximate force has been plotted in Figure 5 alongside the exact expression. Com-

parison of the two shows that the approximation is quite close to the exact expression over the

entire range.

The accuracy of the approximation can be better appreciated by examining the relative

error, given by
(

f̃V − fV

)

/ fV which is plotted in Figure 6. The agreement is best at the

extremes of spacing, and worst in the middle, where the approximation always overestimates

the force. At the worst, the error is on the order of 5%.
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Fig. 6. The fractional error in the approximation to the voltage-constrained force

VI. CONSTANT CHARGE AND ENERGY

A. Force expressions

When the charge is held constant on the sphere, the force expression of Equation 13 takes the

form

FQ =
Q2

16πεR2

2

c2

dc

dξ
=

Q2

16πεR2
fQ (39)

where the normalized force is given by

fQ =
2

c2

dc

dξ
(40)

Combining the derivative term (which has appeared earlier in Equation 36), substituting

the sum for the capacitance in the denominator, and simplifying gives the normalized force as

fQ =

∑N
n=0

(

1+ξ+e(1+2n) acosh(1+ξ )
(

−1−ξ+(1+2n)
√

ξ
√

2+ξ
)

(−1+e(1+2n) acosh(1+ξ ))
2

)

ξ
3
2 (2+ξ )

3
2

(

∑N
n=0

1

−1+e(1+2n) acosh(1+ξ )

)2

(41)

This is more complicated than the constant-voltage force, since there are infinite sums in both

numerator and denominator, both of which have to be summed independently to obtain the

result.

B. Limit of distant sphere

When the charged sphere is far from the wall, the force can be expanded in a series around

infinity to give

fQ =
1

ξ 2
− 2

ξ 3
+

3

ξ 4
− 7

2ξ 5
+

5

2ξ 6
+O

(

1

ξ

)7

(42)
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Fig. 7. Force on a sphere with constant charge increases even more slowly near the wall. Both exact and

approximate are shown.

As for the constant-voltage force, the force follows an inverse-square law at great distances,

but rises more slowly when the sphere approaches the wall.

C. Close sphere

The force for a range of positions was calculated from the exact expression of Equation 41,

using the same convergence test described above. A plot of the force versus spacing is shown

in Figure 7. Examination of the curve for close spacing reveals that it does not follow a simple

power-law expression, unlike the constant-voltage curve.

D. Approximate expression

The calculation of the constant-charge force involves two infinite series. Each of them, like the

capacitance and constant-voltage force, requires a very large number of terms when the sphere

is close to the wall. We can again use the approximate capacitance of Equation 32 to find a

simple expression for the force as

f̃Q =
1

c̃2

dc̃

dξ
=

1

(ξ +ξ 2)
(

1+ 1
2

log(1+1/ξ )
)2 (43)

This approximate force expression has been plotted alongside the exact expression in Figure 7,

where it is apparent that it gives good agreement.

The fractional error in the approximation
(

f̃q − fq

)

/ fq is plotted in Figure 8. The agree-

ment is good for very large and very small spacings, and worse in the middle. Unlike the

constant-voltage case, the error here can be positive or negative, but it is less that 3% every-

where.
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Fig. 8. Error in the approximation to the charge-controlled force

VII. DISCUSSION

Now that we have obtained relatively simple expressions for the force on a sphere near a wall,

we can use them to examine some practical questions without requiring extensive computa-

tions. As an example, consider some of the earlier approximations that have been used when

the attraction and adhesion of charged particles have been discussed.

One of the most used approximations for a charged particle assumes that the charge is

concentrated at the center of the particle. This is certainly a good approximation when the

sphere is far from the wall, because symmetry ensures that the field outside an isolated charged

sphere is equivalent to the field of a single charge placed at the center. In this case, we can use

the image force given in Equation 2. In terms of the geometry of Figure 1, the distance from

the charge to the wall is h+R instead of h, so the image force expression now becomes

Fcenter =
Q2

16πε(h+R)2
=

Q2

16πεR2
fcenter (44)

where the normalized force on a centralized charge is

fcenter =
1

(1+ξ )2
(45)

One objection to the central-charge approximation is that it does not account for the ten-

dency of charge to re-distribute themselves in the presence of a nearby object. As the sphere

approaches the wall, for example, the charge will tend to migrate to the edge of the sphere that

is closer to the wall, drawn by the attraction of the image charges in the wall. Since the charge

is closer to its image, the force of attraction will be stronger. One way to account for this effect

is to assume that all the charge is located at the point of the sphere that is closest to the wall,

again assuming that the dielectric constant of the sphere is not important. Using the image
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Fig. 9. Comparison of new approximations with two older approximations

force equation gives

Fedge =
Q2

16πεh2
=

Q2

16πεR2
fedge (46)

where the normalized force is

fedge =
1

ξ 2
(47)

To see how these earlier approximations compare with those developed in the current paper,

we can plot all of them as a function of spacing, as shown in Figure 9. The immediate

impression from this figure is that both the central and edge approximations are in error by

orders of magnitude when the sphere is very close to the wall. For most applications, this is

the crucial regime, since the forces that lead to attraction and attachment are largest when the

particle is close to the wall.

If the charge is assumed to be concentrated at the center, the force reaches a limiting value

that underestimates the actual force, and completely neglects the increase caused by the mi-

gration of charge through the sphere in the direction of the image charge in the wall. This is

consistent with experimental results [6,7] in which electrostatic adhesion forces are at least an

order of magnitude larger than the values predicted by the central charge approximation.

The edge approximation is equally bad, since it greatly overestimates the attractive force.

By assuming that all the charge is concentrated at a single point, it neglects the spreading

of charge over a relatively large area of the sphere when it is close to the wall. Both of the

approximations, however, are quite good when the sphere is far from the wall.

When the sphere is not too close to the wall (say, ξ > 0.3), and carries a fixed amount of

charge, the central approximation gives a noticeably better agreement than the edge approx-

imation, as shown by the two lower curves in the Figure 9. This is interesting because the

edge approximation has always been less popular than the central approximation in the past.

In general, however, neither of the older approximations is valid when the sphere is close to

the wall.
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The figure also shows how the constant-voltage and constant-charge forces differ. The

force with constant charge is always weaker (by about an order of magnitude) than when the

voltage is held constant, although both are closer to each other than to either of the older

approximations. When the sphere is close to the wall, the constant-voltage force is stronger

because additional charge can flow onto the sphere as it approaches the wall and its capacitance

increases. At the same time, the charge is spreading out over the facing surfaces, giving a

slower increase in force compared to a point charge.

VIII. CONCLUSION

Approximate formulas for the practical evaluation of capacitance and force for a charged

sphere near a wall have been developed. For capacitance, the formula is

C ≈ 4πεR

[

1+
1

2
log(1+1/ξ )

]

(48)

where ξ = h/R is the ratio of spacing to radius. When the sphere is held at a constant potential,

the force is

FV ≈ πεV 2

[

1

ξ +ξ 2

]

(49)

whereas the force when the charge on the sphere is constant is

FQ ≈ Q2

16πεR2

[

1

(ξ +ξ 2)
(

1+ 1
2

log(1+1/ξ )
)2

]

(50)

All of these formulas are valid within about 4% over the entire range of separations, with the

best accuracy occurring when the sphere is very far from or very close to the wall.

Other approximations, based on concentrating the charge at some point on the sphere, are

much worse when the sphere is close to the wall, although they may be useful when the sphere

is separated by 10 or more radii.
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