
  

Pulsar Rotational Stability

● Pulsars are very good flywheels.
– Large mass and rapid spin rate means very 

large angular momentum.

– Large external torques are required to alter the 
spin rate appreciably.

● Pulsars are energetic objects and most are 
powered from their rotational kinetic energy.

– Pulsars are observed to spin down with time.

– Energy goes into magnetic dipole radiation, 
relativistic particles and high-energy radiation.



  

Clocks

● A clock can be made from anything that 
exhibits periodic oscillations.

– Good clocks need very stable oscillators.

– Intrinsic frequency stability due to random 
changes is quantified by the Allan variance.

– Oscillators can also suffer from systematic 
instabilities – e.g. frequency drift due to 
temperature changes in the environment.

● Pendulums have been replaced by quartz 
crystals and atomic resonators.



  

Pulsars as Clocks

● Radio pulses from a pulsar are almost periodic.
– Typical spin-down rates are 10-15 s/s.

– As the energy loss rate is almost constant, we 
can treat pulsars as clocks if we correct for 
their steady spin-down.

● Pulsars also suffer from many systematic drifts.
– This is both a benefit and a disadvantage:

– Measuring predictable drifts allows us to 
determine the properties of the pulsar system.

– However, it complicates their use as clocks.



  

Measuring Arrival Times

● The usefulness of an oscillator depends on the 
precision to which we can measure each “tick”.

– Less of a problem on Earth where we can build 
cavity resonators, amplifiers, etc.

– For pulsars, we only get a weak radio signal.

– Timing precision can be of order 100 ns for the 
best pulsars, but most are not suitable for high 
precision timing.

● Pulsars can only be used as clocks if we 
understand (can predict) all systematic drifts.



  

Timing a Pulse

● How could we 
most precisely 
measure when 
this pulse 
arrived?

● What factors 
contribute to 
the level of 
precision?

● Which pulsars 
are likely to be 
the best for 
timing?



  

Pulse Stability

● Single pulses from a pulsar tend to have 
different shapes, strengths, phase jitter, etc.

● It was discovered that the pulse “profile” usually 
stabilises after ~10 000 pulses are added.

● Timing experiments are done on “integrated” 
profiles, not single pulses.

● The arrival “time” measured is usually taken to 
match that of a pulse arriving in the middle of 
the averaged span.



  

Matched Filtering
● Assume some 

knowledge of the 
“intrinsic” pulse 
profile.

● Correlate with the 
observed profile 
and find the peak.

● Precision can be 
as good as 10% 
of the “bin” width.

● Fourier domain 
correlation gives 
noise-limited 
precision.

Standard template profile, constructed from all available data.



  

Improving Timing Precision

● Maximise the S/N of observations.
– Observe bright pulsars.

– Maximise the recorded radio bandwidth.

– Use more sensitive telescopes.

– Correct for dispersion smearing.

● Observe the “right kind” of pulsars.
– Those with rapid spin periods.

– Those with the most stable spin periods.

– Those with sharp edges in their pulse profile.



  

Quantifying Timing Precision

● The radiometer equation for a pulsed source 
includes contributions from two noise levels (on 
and off pulse) and has the following form:

● Uncertainties in Time Of Arrival (TOA) 
estimation go as the pulse width over S/N:
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Timing Precision Exercise

● Which pulsar is better for timing if we observe 
with the same telescope configuration?

● a) J1909-3744 with a period of 2.9 ms, pulse 
width of 43 μs and mean flux of 3 mJy.

● b) J0835-4510 with a period of 89 ms, pulse 
width of 2.1 ms and mean flux of 1.1 Jy.
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Millisecond Pulsars

● “Recycled” pulsars, spun up by matter accretion 
from a binary companion.

● Accretion process reduces magnetic field 
strength and hence spin-down torque.

– Boosts rotational stability.

● Transfer of angular momentum from accreting 
matter also makes the pulsar spin faster.

● For these reasons, MSPs are the best for high 
precision timing experiments.



  

Time Tagging (1)

● There is not an established pulsar-based time 
standard, though pulsars might be better than 
atomic clocks on the longest time scales.

● Pulse arrival times are measured against 
existing global time standards (UTC).

● Observatories need a good local time standard.
– Usually a Hydrogen maser, stable over short 

periods but tends to drift in the long term.

● This is tracked and compared to global atomic 
time using GPS satellites.



  

Time Tagging (2)

● Pulsar data archives store the precise time of 
the first recorded sample according to the 
telescope's local time standard.

● This can be converted to UTC by applying 
retrospective clock corrections.

● The measured “shift” of the observed pulse is 
added to the starting time to give the 
“topocentric” arrival time.

– This is the arrival time as measured at the 
observatory, using a global time standard.



  

Timing Models (1)

● As we will see, it is useful to construct a 
mathematical model of the rotation of a pulsar.

● The first stage is to express the spin frequency 
as a Taylor series expansion:

● We can directly measure the spin frequency 
and its first derivative at a reference time.

– Sometimes, young pulsars have a measurable 
spin second derivative, but this term can also 
be included to absorb “timing noise”.

t =0̇0t−t0
1
2
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2
...



  

Timing Perturbations (1)

● Consider a solitary pulsar. After removing the 
spin-down effect described on the previous 
slide, what other systematic trends might exist 
in the pulse arrival times?

– Hint: Think of the Doppler effect and relativity.



  

Transforming to the Barycentre

● To remove all systematic trends due to the 
motion of the Earth, we need to find an inertial 
reference frame.

– The closest inertial frame is that associated with 
the centre of mass of the Solar system (SSB).

● We need to calculate the time an observed 
pulse would have arrived at the SSB:

tSSB=t topo−D / f 2RSE

e2DM
2me c

≈DM×4149 MHz2 pc−1 cm3s
Infinite frequency correction:



  

Rӧmer Delay

● The time it takes light to 
travel from the telescope 
to the SSB.

● Classical, geometric path 
delay effect.

● In practice, we first 
correct the observatory 
TOA to the geocentre, 
then to the SSB. r

s

pulsar

SSB Earth

R=−
1
c
r⋅s



  

Solar System Ephemerides

● To compute the vectors on the previous slide, 
we need to know two things:

– How the Earth rotates and exactly where on its 
surface our telescope is.

– Where all the significantly massive bodies in the 
Solar system are.

● Earth rotation is monitored by the IERS.
– See http://www.iers.org

● Planetary positions are monitored by JPL.
– See http://ssd.jpl.nasa.gov



  

Length of Day

Aoki,S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D., Seidelmann, P.K. 1982: Astron. Astrophys. 105, 1. 



  

Inner Solar system, April 1st, 2010.



  

Outer Solar system, April 1st, 2010.



  

The Pulsar's Position

● Our knowledge of     depends on the position of 
the pulsar as well as the SSB.

● With no delay correction, the pulse arrival times 
will be in error by up to: 

● Where β is the ecliptic latitude of the pulsar.
● Timing allows a precise position measurement, 

unless the pulsar is near the ecliptic plane.

s

R
max

=
1 AU
c

cos≈500cos    seconds



  

Proper Motion (1)

● Pulsars can move with respect to the SSB.
● This introduces a time dependence to the 

location of the source on the sky.
● Pulsar timing is sensitive to the transverse 

component of this motion as it introduces a 
changing Romer delay.

– To first order, a Doppler shift introduced by 
radial motion is absorbed into the 
determination of the pulsar's spin period.



  

Proper Motion (2)

● In equatorial coordinates (α = RA, δ = Dec):

● If the distance to the pulsar is known, this 
corresponds to a transverse velocity:

≡̇ ,≡̇cos ,T=
2

2

V T=4.74 km s−1  T

mas yr−1   dkpc 



  

The Shklovskii Effect

● Transverse motion leads to a secular increase 
in the distance from the pulsar to the SSB.

– This mimics an acceleration as the pulses arrive 
from an ever-increasing distance.

– The extra delay is a quadratic function of time:

 t S=
V T

2

2dc
t2

Curve of constant 
distance to SSB

Apparent path of pulsar

SSB

Extra distance● This introduces an 
apparent period derivative:

Ṗ
P
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1
c

V T
2
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Timing Parallax

● Although pulsars are unresolved point sources 
in the beam of a single-dish telescope, they can 
exhibit a kind of parallax.

● Timing parallax comes about because the delay 
due to wavefront curvature across Earth's orbit 
can be significant.

● Delay:
● Amplitude: Earth

Actual wavefront

Assumed Wavefront

Pulsar

SSB

 t=−
1

2cd
r×s2

1 AU 2 cos
2cd



  

Relativistic Corrections

● Δs is the Shapiro delay caused by the passage 
of light through curved space-time in the vicinity 
of massive objects in the Solar system.

– Only important if the line of sight to the pulsar 
grazes the Sun's limb or Jupiter's position.

● ΔE is the Einstein delay, caused by time dilation 
due to the motion of the Earth and other effects.

● These are “higher order” corrections to the 
timing model, but still significant.



  

Timing Residuals

● As we have seen, many different perturbations 
act on the observed spin period of a pulsar.

● To cope with this we construct a timing model 
that sums the contributions from all known 
perturbations.

● To refine the model we minimise the least-
squares difference between the predicted and 
observed pulse arrival times (residuals).

● A perfect model should yield white noise timing 
residuals.



  

Timing Signatures



  

Keplerian Orbits

● About 1% of the known pulsars have binary 
companions. In this case, additional parameters 
must be included in the timing model:

– Orbital Period, P
b

– Projected semi-major orbital axis, x = a sin(i)

– Orbital eccentricity, e

– Longitude of periastron, ω

– Epoch of periastron passage, T
0

– Position angle of ascending node, Ω



  



  

The Mass Function

● A binary pulsar is equivalent to a spectroscopic 
binary system where only one star is bright 
enough to detect.

● In this case, Kepler's 3rd law gives:

● This quantity is called the “mass function”.
– While everything on the RHS is observable, the 

masses and inclination are unknown and 
cannot be determined in a Keplerian system.

mc sin i 3

m pmc
2=

42

G

a p sin i 3

Pb
2



  

Post-Keplerian Parameters (1)

● Neutron stars are compact objects and can 
exist in tight binary systems.

– High orbital velocities, strong gravitational fields 
and rapid accelerations.

● Post-Keplerian corrections to gravitational 
theories become important.

● Pulsars and white dwarf stars can be 
considered point masses. In GR, we obtain 
another 5 timing model parameters.

– These are functions of the component masses 
and other Keplerian parameters.



  

Post-Keplerian Parameters (2)

● Relativistic effects include:
– Precession of periastron. The precession of 

Mercury's orbit was used as an early test of 
GR. The relativistic component has a 
magnitude of only 43” per century, while 
double neutron stars can exhibit several 
degrees of precession per year.

– Orbital period decay. The emission of 
quadrupole gravitational radiation bleeds 
energy from the orbit, causing it to shrink with 
time. Radiated power is higher in compact 
systems with massive components.



  

The Original Binary Pulsar

● A double neutron star system in which one is 
an observable radio pulsar.

● Discovered in 1974 by Hulse & Taylor, who 
received the Nobel Prize in 1993.

● Two compact, 1.4 Solar mass objects, with an 
orbital period of 7.75 hours!

● Orbital period has been observed to decrease 
at a rate of 2.421x10-12 s/s (within uncertainty!).

● Orbit shrinks by 1cm per day.
– Eventually, the neutron stars will merge!



  



  

The Double Pulsar

● Only one known example of a binary system in 
which both components are visible pulsars.

● Discovered in 2003/4 (not simultaneously!)
● Very compact, orbital period of 2.4 hours.
● Timing of each pulsar gives an independent 

mass function solution and the ratio of the 
semi-major axes gives the component mass 
ratio (as with a visual binary system).

● Measuring just one PK parameter uniquely 
determines both neutron star masses.



  



  

Pulsar Timing Arrays

● Timing of single and double pulsars is very 
informative, but can we time multiple pulsars?

– We might be able to detect systematic trends 
that are coherent across the whole Galaxy.

– The gravitational wave background signal.

● Models predict that we need ~20 pulsars timed 
to a precision of ~100 ns for ~5 years.

● This could be a unique probe for the low-
frequency end of the gravity wave spectrum.
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