Pulsar Rotational Stability

- Pulsars are very good flywheels.
 - Large mass and rapid spin rate means very large angular momentum.
 - Large external torques are required to alter the spin rate appreciably.
- Pulsars are energetic objects and most are powered from their rotational kinetic energy.
 - Pulsars are observed to spin down with time.
 - Energy goes into magnetic dipole radiation, relativistic particles and high-energy radiation.

Clocks

- A clock can be made from anything that exhibits periodic oscillations.
 - Good clocks need very stable oscillators.
 - Intrinsic frequency stability due to random changes is quantified by the Allan variance.
 - Oscillators can also suffer from systematic instabilities – e.g. frequency drift due to temperature changes in the environment.
- Pendulums have been replaced by quartz crystals and atomic resonators.

Pulsars as Clocks

- Radio pulses from a pulsar are almost periodic.
 - Typical spin-down rates are 10⁻¹⁵ s/s.
 - As the energy loss rate is almost constant, we can treat pulsars as clocks if we correct for their steady spin-down.
- Pulsars also suffer from many systematic drifts.
 - This is both a benefit and a disadvantage:
 - Measuring predictable drifts allows us to determine the properties of the pulsar system.
 - However, it complicates their use as clocks.

Measuring Arrival Times

- The usefulness of an oscillator depends on the precision to which we can measure each "tick".
 - Less of a problem on Earth where we can build cavity resonators, amplifiers, etc.
 - For pulsars, we only get a weak radio signal.
 - Timing precision can be of order 100 ns for the best pulsars, but most are not suitable for high precision timing.
- Pulsars can only be used as clocks if we understand (can *predict*) all systematic drifts.

Timing a Pulse

- How could we most precisely measure when this pulse arrived?
- What factors contribute to the level of precision?
- Which pulsars are likely to be the best for timing?

Pulse Stability

- Single pulses from a pulsar tend to have different shapes, strengths, phase jitter, etc.
- It was discovered that the pulse "profile" usually stabilises after ~10 000 pulses are added.
- Timing experiments are done on "integrated" profiles, not single pulses.
- The arrival "time" measured is usually taken to match that of a pulse arriving in the middle of the averaged span.

Matched Filtering

- Assume some knowledge of the "intrinsic" pulse profile.
- Correlate with the observed profile and find the peak.
- Precision can be as good as 10% of the "bin" width.
- Fourier domain correlation gives noise-limited precision.

Improving Timing Precision

- Maximise the S/N of observations.
 - Observe bright pulsars.
 - Maximise the recorded radio bandwidth.
 - Use more sensitive telescopes.
 - Correct for dispersion smearing.
- Observe the "right kind" of pulsars.
 - Those with rapid spin periods.
 - Those with the most stable spin periods.
 - Those with sharp edges in their pulse profile.

Quantifying Timing Precision

 The radiometer equation for a pulsed source includes contributions from two noise levels (on and off pulse) and has the following form:

$$S/N = \sqrt{n_p t_{obs} \Delta f} \left| \frac{T_{pulse}}{T_{sys}} \right| \frac{\sqrt{W(P - W)}}{P}$$
 Width

Period

 Uncertainties in Time Of Arrival (TOA) estimation go as the pulse width over S/N:

$$\sigma_{\text{TOA}} \simeq \frac{W}{S/N} \propto \frac{S_{\text{sys}}}{\sqrt{n_p t_{\text{obs}}} \Delta f}} \times \frac{P \,\delta^{3/2}}{S_{\text{pulsar}}} \delta = \frac{W}{P}$$

Timing Precision Exercise

- Which pulsar is better for timing if we observe with the same telescope configuration?
- a) J1909-3744 with a period of 2.9 ms, pulse width of 43 μs and mean flux of 3 mJy.
- b) J0835-4510 with a period of 89 ms, pulse width of 2.1 ms and mean flux of 1.1 Jy.

$$\sigma_{\rm TOA} \simeq \frac{W}{S/N} \propto \frac{S_{\rm sys}}{\sqrt{n_p t_{\rm obs}} \Delta f} \times \frac{P \,\delta^{3/2}}{S_{\rm pulsar}}$$

Millisecond Pulsars

- "Recycled" pulsars, spun up by matter accretion from a binary companion.
- Accretion process reduces magnetic field strength and hence spin-down torque.
 - Boosts rotational stability.
- Transfer of angular momentum from accreting matter also makes the pulsar spin faster.
- For these reasons, MSPs are the best for high precision timing experiments.

Time Tagging (1)

- There is not an established pulsar-based time standard, though pulsars might be better than atomic clocks on the longest time scales.
- Pulse arrival times are measured against existing global time standards (UTC).
- Observatories need a good local time standard.
 - Usually a Hydrogen maser, stable over short periods but tends to drift in the long term.
- This is tracked and compared to global atomic time using GPS satellites.

Time Tagging (2)

- Pulsar data archives store the precise time of the first recorded sample according to the telescope's local time standard.
- This can be converted to UTC by applying *retrospective* clock corrections.
- The measured "shift" of the observed pulse is added to the starting time to give the "topocentric" arrival time.
 - This is the arrival time as measured at the observatory, using a global time standard.

Timing Models (1)

- As we will see, it is useful to construct a mathematical model of the rotation of a pulsar.
- The first stage is to express the spin frequency as a Taylor series expansion:

$$v(t) = v_0 + \dot{v}_0(t - t_0) + \frac{1}{2} \ddot{v}_0(t - t_0)^2 + \dots$$

- We can directly measure the spin frequency and its first derivative at a reference time.
 - Sometimes, young pulsars have a measurable spin second derivative, but this term can also be included to absorb "timing noise".

Timing Perturbations (1)

 Consider a solitary pulsar. After removing the spin-down effect described on the previous slide, what other systematic trends might exist in the pulse arrival times?

- Hint: Think of the Doppler effect and relativity.

Transforming to the Barycentre

- To remove all systematic trends due to the motion of the Earth, we need to find an inertial reference frame.
 - The closest inertial frame is that associated with the centre of mass of the Solar system (SSB).
- We need to calculate the time an observed pulse would have arrived at the SSB:

$$t_{\text{SSB}} = t_{\text{topo}} - \frac{\Delta D}{f^2} + \Delta_{\text{R}} + \Delta_{\text{S}} + \Delta_{\text{E}}$$

Infinite frequency correction: $\frac{e^2 DM}{2\pi m_e c} \approx DM \times 4149 \text{ MHz}^2 \text{ pc}^{-1} \text{ cm}^3 \text{ s}$

Römer Delay

- The time it takes light to travel from the telescope to the SSB.
- Classical, geometric path delay effect.
- In practice, we first correct the observatory TOA to the geocentre, then to the SSB.

Solar System Ephemerides

- To compute the vectors on the previous slide, we need to know two things:
 - How the Earth rotates and exactly where on its surface our telescope is.
 - Where all the significantly massive bodies in the Solar system are.
- Earth rotation is monitored by the IERS.
 - See http://www.iers.org
- Planetary positions are monitored by JPL.
 - See http://ssd.jpl.nasa.gov

Length of Day

Aoki, S., Guinot, B., Kaplan, G.H., Kinoshita, H., McCarthy, D.D., Seidelmann, P.K. 1982: Astron. Astrophys. 105, 1.

Inner Solar system, April 1st, 2010.

111116283

Outer Solar system, April 1st, 2010.

11111232492

The Pulsar's Position

- Our knowledge of ŝ depends on the position of the pulsar as well as the SSB.
- With no delay correction, the pulse arrival times will be in error by up to:

$$\Delta_R^{\max} = \frac{1 \,\mathrm{AU}}{c} \cos\beta \approx 500 \cos\beta \quad \text{seconds}$$

- Where β is the ecliptic latitude of the pulsar.
- Timing allows a precise position measurement, unless the pulsar is near the ecliptic plane.

Proper Motion (1)

- Pulsars can move with respect to the SSB.
- This introduces a time dependence to the location of the source on the sky.
- Pulsar timing is sensitive to the transverse component of this motion as it introduces a changing Romer delay.
 - To first order, a Doppler shift introduced by radial motion is absorbed into the determination of the pulsar's spin period.

Proper Motion (2)

• In equatorial coordinates ($\alpha = RA$, $\delta = Dec$):

$$\mu_{\delta} \equiv \dot{\delta}$$
, $\mu_{\alpha} \equiv \dot{\alpha} \cos \delta$, $\mu_{T} = \sqrt{\mu_{\alpha}^{2} + \mu_{\delta}^{2}}$

If the distance to the pulsar is known, this corresponds to a transverse velocity:

$$V_{\rm T} = 4.74 \,\mathrm{km \, s^{-1}} \left| \frac{\mu_{\rm T}}{\mathrm{mas \, yr^{-1}}} \right| \left| \frac{d}{\mathrm{kpc}} \right|$$

The Shklovskii Effect

- Transverse motion leads to a secular increase in the distance from the pulsar to the SSB.
 - This mimics an acceleration as the pulses arrive from an ever-increasing distance.
 - The extra delay is a quadratic function of time:

Timing Parallax

- Although pulsars are unresolved point sources in the beam of a single-dish telescope, they can exhibit a kind of parallax.
- Timing parallax comes about because the delay due to wavefront curvature across Earth's orbit can be significant.

Relativistic Corrections

- Δs is the Shapiro delay caused by the passage of light through curved space-time in the vicinity of massive objects in the Solar system.
 - Only important if the line of sight to the pulsar grazes the Sun's limb or Jupiter's position.
- ΔE is the Einstein delay, caused by time dilation due to the motion of the Earth and other effects.
- These are "higher order" corrections to the timing model, but still significant.

Timing Residuals

- As we have seen, many different perturbations act on the observed spin period of a pulsar.
- To cope with this we construct a timing model that sums the contributions from all known perturbations.
- To refine the model we minimise the leastsquares difference between the predicted and observed pulse arrival times (residuals).
- A perfect model should yield white noise timing residuals.

Timing Signatures

Keplerian Orbits

- About 1% of the known pulsars have binary companions. In this case, additional parameters must be included in the timing model:
 - Orbital Period, P
 - Projected semi-major orbital axis, x = a sin(i)
 - Orbital eccentricity, e
 - Longitude of periastron, ω
 - Epoch of periastron passage, T_{0}
 - Position angle of ascending node, $\boldsymbol{\Omega}$

Orbital Plane

D

ð

ω

Ω

The Mass Function

- A binary pulsar is equivalent to a spectroscopic binary system where only one star is bright enough to detect.
- In this case, Kepler's 3rd law gives:

$$\frac{(m_c \sin i)^3}{(m_p + m_c)^2} = \frac{4\pi^2}{G} \frac{(a_p \sin i)^3}{P_b^2}$$

- This quantity is called the "mass function".
 - While everything on the RHS is observable, the masses and inclination are unknown and cannot be determined in a Keplerian system.

Post-Keplerian Parameters (1)

- Neutron stars are compact objects and can exist in tight binary systems.
 - High orbital velocities, strong gravitational fields and rapid accelerations.
- Post-Keplerian corrections to gravitational theories become important.
- Pulsars and white dwarf stars can be considered point masses. In GR, we obtain another 5 timing model parameters.

 These are functions of the component masses and other Keplerian parameters.

Post-Keplerian Parameters (2)

• Relativistic effects include:

- Precession of periastron. The precession of Mercury's orbit was used as an early test of GR. The relativistic component has a magnitude of only 43" per century, while double neutron stars can exhibit several degrees of precession per year.
- Orbital period decay. The emission of quadrupole gravitational radiation bleeds energy from the orbit, causing it to shrink with time. Radiated power is higher in compact systems with massive components.

The Original Binary Pulsar

- A double neutron star system in which one is an observable radio pulsar.
- Discovered in 1974 by Hulse & Taylor, who received the Nobel Prize in 1993.
- Two compact, 1.4 Solar mass objects, with an orbital period of 7.75 hours!
- Orbital period has been observed to decrease at a rate of 2.421x10⁻¹² s/s (within uncertainty!).
- Orbit shrinks by 1cm per day.

- Eventually, the neutron stars will merge!

The Double Pulsar

- Only one known example of a binary system in which both components are visible pulsars.
- Discovered in 2003/4 (not simultaneously!)
- Very compact, orbital period of 2.4 hours.
- Timing of each pulsar gives an independent mass function solution and the ratio of the semi-major axes gives the component mass ratio (as with a visual binary system).
- Measuring just one PK parameter uniquely determines both neutron star masses.

Mass A (M_{Sun})

Pulsar Timing Arrays

- Timing of single and double pulsars is very informative, but can we time multiple pulsars?
 - We might be able to detect systematic trends that are coherent across the whole Galaxy.
 - The gravitational wave background signal.
- Models predict that we need ~20 pulsars timed to a precision of ~100 ns for ~5 years.
- This could be a unique probe for the lowfrequency end of the gravity wave spectrum.

