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Preface

This monograph, which is an extension of Dr. Emadzadeh’s doctoral thesis, investi-
gates the different aspects of utilization of X-ray pulsars for navigation of spacecraft
in space. In our view, the monograph possesses two unique features. First, it pro-
vides a solid mathematical formulation for the absolute and relative navigation
problems based on the use of X-ray pulsar measurements. Second, it presents a
comprehensive framework for the signal processing techniques needed to obtain the
navigation solution.

We had several readers in mind when writing this monograph. One such group is
the body of university students and researchers who work on new space navigation
techniques. Using X-ray pulsars for navigation is an interesting field in which there
are many new challenging problems that need to be addressed. Another target group
comprises people from the industry. Deep space navigation missions, especially the
ones directed beyond the solar system, have attracted a lot of attention in recent
years. Employing new space navigation techniques will definitely play a key role
in making such missions successful. We hope that the monograph will encourage
more researchers in the area of space navigation to work on X-ray pulsar-based
navigation.

The subject matter requires some familiarity with linear systems, probability,
and estimation theory. The knowledge is generally assumed to be of advanced un-
dergraduate and graduate level. It will be more beneficial, if the reader proceeds
through the chapters in sequence. We first provide some basic background knowl-
edge on pulsars and a literature review on pulsar-based navigation in Chap. 2. Then,
we present the navigation problems, and develop the X-ray pulsar signal models in
Chap. 3. Using these models, we formulate and analyze the pulse delay estimation
problem in Chap. 3. Different pulse delay estimators are proposed in Chaps. 4, 5,
and 6. Using the presented estimators, Chap. 7 provides a recursive algorithm to ob-
tain the navigation solution. Concluding remarks and suggestions for future work
are given in Chap. 8.

Finally, we acknowledge Dr. A. Robert Golshan for his valuable comments and
suggestions, which helped us greatly improve the monograph.

Los Angeles, CA Amir A. Emadzadeh
October 2010 Jason L. Speyer
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Chapter 1
Introduction

One of the main requirements for any space mission is to navigate the spacecraft.
Current space navigation methods highly depend on ground-based operations.
To achieve more autonomy and also to augment the current available navigation so-
lutions, we are interested in utilization of celestial-based navigation systems. Such
systems use signals emitted from celestial sources located at great distances from
Earth. Because of their special characteristics, X-ray pulsars are potential celestial
candidates for navigation.

The purpose of this book is to provide a concise treatment of utilizing a new
navigation system for space missions, which is based on employing X-ray signals
emitted from pulsars. Specifically, the book starts with reviewing current navigation
methods being used for space missions. We provide motivations for adopting new
space navigation approaches, and we suggest employing X-ray pulsars. We present
the navigation system structure and provide the mathematical tools required to study
and analyze different parts of the system. We also develop different signal process-
ing techniques, which are essential to obtain the pulsar-based navigation solution.

Chapter 2 begins with an overview of current space navigation systems. It ex-
plains why utilizing celestial-based navigation systems is an interesting option for
space missions. It shows why, of all available celestial sources, X-ray pulsars are
suggested to be employed for space navigation. It also provides a brief treatment of
pulsars and the history of pulsar-based space navigation.

In Chap. 3, the structure of the proposed X-ray pulsar-based navigation system is
explained. Mathematical models describing the X-ray pulsar signals are developed.
The time of arrival (TOA) of received photons is modeled as a non-homogeneous
Poisson process (NHPP), and the probability density function of the TOAs is pre-
sented. Also, an effective algorithm is presented for simulation of the TOAs for any
given pulsar with a known rate function. Additionally, it is explained how using
epoch folding, photon intensity function can be retrieved by measurement of the
TOAs. The noise associated with the procedure is also analyzed. Furthermore, the
effect of imprecise spacecraft velocity information on epoch folding is studied.

Chapter 4 focuses on mathematical formulation of the pulse delay estimation
problem. It employs models of the pulsar photon intensity functions on each detec-
tor. It also shows how to model the differential time between the spacecraft clocks.

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
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2 1 Introduction

Depending on available spacecraft data, the Cramér–Rao lower bound (CRLB) is
provided for estimation of the unknown parameters. Some numerical examples are
also presented.

In Chap. 5, it is proposed to first recover the pulsar photon intensity functions
through the epoch folding procedure, and then estimate the pulse delay using the
recovered photon intensities. Based on epoch folding, two different methods are pro-
posed for the estimation of the pulse delay: (1) Using the cross correlation function
between the empirical rate function and the true rate function and (2) Minimizing
the difference between the empirical rate function and the true one through solving
a nonlinear least squares problem. Asymptotic behavior of the proposed estimators
and the effect of spacecraft velocity errors on their performance are also studied.
Computational complexity of the estimators is investigated as well. Finally, analyt-
ical results are verified via numerical simulations.

Based on maximum-likelihood (ML) criterion and direct utilization of the mea-
sured photon time tags, another pulse delay estimator is proposed in Chap. 6. The
estimator’s asymptotic behavior, and the effect of imprecise spacecraft velocity data
on its performance is studied. Computational complexity of the proposed estima-
tor is investigated. And to assess the analytical results, numerical simulations are
performed.

In Chap. 7, the dynamics models of inertial measurement unit (IMU) and space-
craft motion are employed by a Kalman filter to obtain the three-dimensional
navigation solution. The effect of different navigation system parameters on achiev-
able estimation accuracies is investigated. In particular, the effects of different
values of IMU uncertainty, measurement noise variance, the number of pulsars used
for measurement, their geometric dispersion in the sky map, and imprecise space-
craft velocity data are considered.

Finally, concluding remarks and suggestions for future work are provided in
Chap. 8.



Chapter 2
Celestial-Based Navigation: An Overview

2.1 Introduction

In this chapter, we present an overview of spacecraft navigation using X-ray pulsars.
In Sect. 2.2, we present a concise treatment of current navigation methods being
utilized for space missions. Section 2.3.1 describes why employing celestial-based
navigation techniques is desirable for space missions. We introduce different types
of pulsars in Sect. 2.3.2. Section 2.3.3 explains why X-ray pulsars are interesting
candidates to be used for navigation purposes. A short history of pulsar-based navi-
gation is given in Sect. 2.3.4.

2.2 Current Spacecraft Navigation Systems

Most of space vehicle operations, thus far, have relied widely on Earth-based nav-
igation methods for absolute position determination [1, 2]. Methods such as radar
range and optical tracking are widely used for this purpose [3]. Although a ground-
based tracking system has the advantage of not requiring an active hardware on
the spacecraft itself, it does need extensive ground operations and careful analy-
sis of the measured data in an electromagnetically noisy background environment.
Also, as a spacecraft moves further away from Earth, its position estimation error
increases if a radar-based navigation system is used. To achieve the necessary range
determination, the radar system needs to know the observation station’s position
on Earth accurately. Another limitation is that such a system requires the knowl-
edge of positional information of the solar system objects [1]. However, even if
precise information of the radar station and solar system objects is available, the
vehicle position estimation can only be accurate to a finite angular accuracy. The
transmitted radar beam, along with the reflected signal, travels in a cone of uncer-
tainty. This uncertainty degrades the position knowledge of the vehicle as a linear
function of distance. Alternatively, many space vehicles, traveling into deep space
or on interplanetary missions, employ active transmitters for orbit determination
purposes [1]. The spacecraft receives a ping from an observation station on Earth

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
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4 2 Celestial-Based Navigation: An Overview

and retransmits the signal back to Earth. Then, the radial velocity is measured at
the receiving station by measuring the Doppler frequency of the transmitted signal.
Although some improvements are achieved in spacecraft navigation utilizing such
systems, this method still has errors that increase with distance. Early experiments
using these tracking systems on the Viking spacecraft showed accuracies to about
50 km in position estimation error for missions to Mars and positional accuracies on
the order of hundreds of kilometers at the outer planets [2].

Another navigation approach is optical tracking. Spacecraft navigation based on
optical tracking measurements is performed in a similar way as radar tracking [4].
This technique is based on the use of the visible light reflected from a vehicle to
determine its location. For some optical measurements, a photograph needs to be
taken and the vehicle’s position is calculated after analysis of the photograph and
comparison to a fixed star background. Therefore, real-time measurements using
such systems typically are not achieved easily. Furthermore, optical measurements
are limited by environmental conditions.

As many missions have concentrated on planetary observations, spacecraft navi-
gation can be done by taking video images of the planet and comparing them to the
known planetary parameters such as diameter and position relative to the other ce-
lestial objects. Throughout this procedure, the position of the spacecraft relative to
the planet can be determined [5]. This requires the vehicle to be within the vicinity
of the investigated planet.

To obtain accurate absolute navigation solutions for deep space missions, a com-
bination of Earth-based radar ranging and on-vehicle planet imaging is typically
required. This approach still requires human interaction and interpretation of data.
Furthermore, as radar-ranging errors increase as the vehicle’s distance from Earth
increases, accurate navigation becomes more complex because of the required finer
pointing accuracy of ground antennas. Additionally, the vehicles that process video
images for navigation purposes need to have complicated onboard systems, which
increase their cost. The imaging process also requires the vehicles to be sufficiently
close to the planets. Therefore, it is necessary to investigate alternative methods that
could provide a complete, accurate absolute navigation solution throughout the solar
system, and perhaps eventually the intergalactic regimes.

For vehicles operating in space close to the Earth, the current Global Position-
ing System (GPS) can provide a complete autonomous navigation solution [6]. The
GPS uses a constellation of between 24 and 32 medium Earth orbit satellites that
transmit precise microwave signals, enable GPS receivers to determine their loca-
tion, speed, direction, and time. However, these satellite systems have limited scope
for the operation of vehicles relatively far from Earth.

For deep space missions, many spacecraft utilize the Deep Space Network
(DSN). This system is an international network of antennas that supports inter-
planetary spacecraft missions, and radio and radar astronomy observations for the
exploration of the solar system and the universe [7]. The network also supports
selected Earth-orbiting missions. The DSN currently consists of three deep space
communications facilities placed ∼120◦ apart around the world: at Goldstone,
in California’s Mojave desert; near Madrid, Spain; and near Canberra, Australia.



2.3 Pulsar-Based Navigation 5

This strategic placement permits constant observation of spacecraft as the Earth
rotates and helps to make the DSN the largest and most sensitive scientific telecom-
munications system in the world.

Although accurate radial position can be determined using DSN, it requires
extensive ground operations and scheduling to coordinate the observations. Even
utilizing interferometry, the angular uncertainty still can increase significantly with
distance. Position accuracies in the order of 1–10 km per astronomical unit (AU) of
distance from Earth are achievable using interferometric measurements of the Very
Long Baseline Interferometer (VLBI) through the DSN [1]. The VLBI is a type of
astronomical interferometry used in radio astronomy. It allows observations of an
object that are made simultaneously by many telescopes to be combined, emulating
a telescope with a size equal to the maximum separation between the telescopes.
Data received at each antenna in the array is paired with timing information, usually
from a local atomic clock, and then stored for later analysis on magnetic tape or hard
disk. At a later time, the data is correlated with data from other antennas similarly
recorded to produce the resulting image. The resolution achievable using interfer-
ometry is proportional to the observing frequency and the distance between the
antennas farthest apart in the array. The VLBI technique enables this distance to
be much greater than that possible with conventional interferometry, which requires
antennas to be physically connected by coaxial cable, waveguide, optical fiber, or
other types of transmission line.

2.3 Pulsar-Based Navigation

2.3.1 Why Celestial-Based Systems?

Autonomous formation flying of multiple spacecraft is an important technology for
both deep-space and near-Earth applications [8, 9]. One of the main requirements
of a formation flight is accurate knowledge of the relative position and velocities
between the vehicles. The spacecraft absolute navigation solution is also needed for
any space mission. Several researchers have shown that the navigation solution for
aerial and low-Earth-orbit applications can be obtained by utilizing differential GPS
(DGPS). DGPS is an enhancement to Global Positioning System that uses a net-
work of fixed, ground-based reference stations to broadcast the difference between
the positions indicated by the satellite systems and known fixed positions. These sta-
tions broadcast the difference between measured satellite pseudoranges and actual
(internally computed) pseudoranges, with receiver stations correcting their pseudo-
ranges by the same amount. However, for deep space missions or situations where
GPS is not available, an alternative approach is needed. Employing Earth-based
navigation systems, such as DSN, is a possibility. But, as mentioned in Sect. 2.2,
such systems suffer from low performance in situations where long range naviga-
tion is required. Furthermore, they are highly based on communicating with Earth
to analyze their data.
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Because of the aforementioned problems, the need for higher accuracy, and
the continuing increase in cost of vehicle operations, spacecraft navigation is
evolving from Earth-based solutions toward more autonomous methods [10, 11].
Autonomous operation means determination of a complete navigation solution by
the spacecraft to guide itself toward its destination without human interaction or
assistance. An autonomous navigation system internally computes its own naviga-
tion and guidance information by using onboard sensors. Any deviation from its
planned path is detected, reported, and corrected without input from the ground
mission control. These autonomous operations reduce the dependence of space mis-
sions on human interaction and communication with Earth. To reduce dependence
of navigation systems on ground-based operations and achieve more autonomy,
utilizing celestial-based navigation systems is desirable. Another reason for devel-
oping such novel navigation methods is to augment current systems by employing
additional measurements to improve their performance. Celestial-based systems
use signals emitted from celestial sources located at great distances from Earth.
Of various celestial sources, X-ray pulsars are interesting candidates for use in both
absolute and relative navigation systems because of their special characteristics.
These characteristics are explained in detail in the following.

2.3.2 Pulsars

Celestial sources have played significant roles in navigation throughout history,
although the majority of sources used have been fixed, persistent stars with visi-
ble radiation. Sources that produce signals with variable intensity are referred to
as variable celestial sources. There are several classes of variable celestial objects
emitting signals whose intensities vary from radio signals to gamma-ray over the
electromagnetic spectrum. Of the different variable source types, ones producing
a uniquely identifiable signal that is periodic and predictable can be utilized in a
specific manner for navigation purposes. One particular class of variable celestial
sources having this property is pulsars. Pulsars are rapidly rotating, highly magne-
tized neutron stars [12]. As the neutron star spins, charged particles are accelerated
out along magnetic field lines in the magnetosphere. This acceleration causes the
particle to emit electromagnetic radiation as a sequence of pulses produced and as
the magnetic axis (and hence, the radiation beam) crosses the observer’s line of sight
in each rotation (see Fig. 2.1). The repetition period of the pulses is simply the rota-
tion period of the neutron star. Pulsars are observed in the radio, visible, X-ray, and
gamma-ray bands of the electromagnetic spectrum [13].

Radio pulsars are broadband, stellar pulsating radio sources powered by the ro-
tation of a neutron star, resulting in a great stability in the pulsar period [14]. Over
1,300 pulsars are known [13], and more are being discovered through new research.
In some pulsars, irregularities (glitches) in their rotational frequency are observed
every few years, ranging from the order of 10−6 s for the Vela pulsar to only 10−8 s
for the Crab pulsar. Although individually emitted pulses from the pulsars vary over



2.3 Pulsar-Based Navigation 7

Fig. 2.1 Diagram of a pulsar. Photo courtesy of National Radio Astronomy Observatory (NRAO)

time, the average pulse shape is stable and characterizes the pulsar. Very precise
models are established for the mean arrival time of pulsars, whose stability out-
performs even the most precise artificial time bases. Of all pulsars, the most stable
ones are the millisecond pulsars. Joseph Taylor and collaborators have demonstrated
that the timing stability of millisecond pulsars is comparable with terrestrial atomic
clocks [15]. Millisecond pulsars have been detected in the radio, X-ray, and gamma-
ray portions of the electromagnetic spectrum. Currently, there are 130 millisecond
pulsars known in globular clusters. Unfortunately, their signal to noise ratio (SNR)
is considerably lower than that of longer period pulsars.

X-ray pulsars are grouped in two different categories according to the source
of energy that powers the radiation: accretion-powered and rotation-powered
pulsars [17].

1. Accretion-powered pulsars are a class of astronomical objects that are X-ray
sources displaying strict periodic variations in X-ray intensity. The X-ray pe-
riods range from as little as a fraction of a second to as much as several minutes.
An X-ray pulsar consists of a magnetized neutron star in orbit with a normal stel-
lar companion and is a type of binary star system. The magnetic field strength at
the surface of the neutron star is typically about 1012 Gauss, over a trillion times
stronger than the strength of the magnetic field measured at the surface of the
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Earth (0.6 Gauss). If the magnetic field and rotation axes of the neutron star are
misaligned then X-ray pulsations are observed. Accretion pulsars are not stable
timing sources because their period changes over time. More than 30 accretion-
powered X-ray pulsars have been discovered with periods from 0.069 to 1,413 s.

2. Rotation-powered pulsars are rapidly rotating neutron stars whose electromag-
netic radiation is observed in regularly spaced intervals, or pulses. They differ
from other types of pulsars in that the source of power for the production of ra-
diation is the loss of rotational energy. For a long time, the Crab pulsar, the most
luminous rotation-powered pulsar, had been the only pulsar detected at X-ray
energies. More than 20 rotation-powered X-ray pulsars have since been detected
[18, 19]. Figure 2.2 depicts a Chandra X-ray image of the Vela rotation-powered
pulsar (PSR B083345) [20].

Pulsars are the original gamma-ray celestial sources. A few years after the dis-
covery of radio pulsars by astronomers, the Crab and Vela pulsars were detected at
the gamma-ray band of the electromagnetic spectrum. Pulsars accelerate particles
with tremendous energies in their magnetospheres. These particles are ultimately
responsible for the gamma-ray emission seen from pulsars. The Vela pulsar, which
spins 11 times a second, is the brightest persistent source of gamma rays in the sky.
Yet gamma rays, the most energetic form of light, are few and far between. Even
Fermi’s Large Area Telescope sees only about one gamma-ray photon from Vela
every 2 min. As opposed to a pulsar’s radio beams which only content a few parts
per million of its total power, gamma-rays represent 10% or more.

Fig. 2.2 Vela Pulsar (PSR
B083345) X-ray image taken
by Chandra X-ray
observatory (Credit:
The National Aeronautics
and Space Administration
(NASA)/PSU/G. Pavlov
et al.)
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By the end of 2004 there were about 1,500 radio pulsars known, but only seven
had been detected in the gamma-ray band. Pulsars tend to have large magnetic
fields and to be spinning rapidly. The loss of the pulsar’s spin energy eventually
appears as radiation across the electromagnetic spectrum, including gamma-rays.
Both observations and models indicate that pulsars eventually lose the ability to
emit gamma-rays as the pulsar’s rotational speed slows down.

With NASA’s Fermi gamma-ray space telescope, astronomers can now have a
better look at pulsars. In two studies published in the July 2, 2009 edition of Science
Express, international scientists have analyzed gamma-rays from two dozen pul-
sars, including 16 discovered by Fermi (see Fig. 2.3). Fermi is the first spacecraft
able to identify pulsars by their gamma-ray emission alone [21]. The new pulsars
were discovered as part of a comprehensive search for periodic gamma-ray fluctu-
ations using 5 months of Fermi Large Area Telescope data and new computational
techniques. In another part of the study, Fermi team examined gamma-rays from
eight pulsars, all of which were previously discovered at radio wavelengths. Before
Fermi launched, it was not clear that pulsars with millisecond periods could emit
gamma rays. Now it is cleared that they do. It has also become clear that, despite
their differences, both normal and millisecond pulsars share similar mechanisms for
emitting gamma-rays.

NASA’s Fermi Gamma-ray Space Telescope is an astrophysics and particle
physics partnership, developed in collaboration with the U.S. Department of En-
ergy, along with important contributions from academic institutions and partners in
France, Germany, Italy, Japan, Sweden, and the U.S. [21].

Fig. 2.3 This gamma-ray all-sky map, which is aligned with the plane of the Milky Way Galaxy,
shows the pulsar positions, with the 16 new pulsars, detected by Fermi Gamma-ray Space
Telescope, circled in yellow (eight previously known radio pulsars are in magenta) (Credit: NASA/
DOE/Fermi LAT Collaboration)
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2.3.3 Why Use X-ray Pulsars for Navigation?

Variable sources emitting signals in the radio band are certainly one potential
candidate that can be used in a navigation system. However, at the radio frequencies
that these sources emit, i.e., from 100 MHz to a few GHz, antennas with 20 m in
diameter or larger are required to detect their signals [22,23]. At these wavelengths,
“dish” style radio telescopes predominate. The angular resolution of a dish style an-
tenna is a function of the diameter of the dish in proportion to the wavelength of
the electromagnetic radiation being observed. This dictates the size of the dish that
a radio telescope needs to have a useful resolution.

For most space missions, large antennas highly impact the design and cost of
the operation [24]. Furthermore, because of neighboring sources that emit in ra-
dio bands and also low signal intensity of radio pulsars, long integration times are
needed to obtain a signal with acceptable SNR, suitable for use in a navigation sys-
tem. Similar limitations exist for the visible variable sources. Additionally, there
are only five isolated pulsars known to emit in the visible band, and all are faint.
There are also a only few pulsars discovered which emit in the gamma-ray wave-
lengths. This is another limitation for utilizing the visible and gamma-ray pulsars in
a navigation system.

The disadvantages of the radio and visible sources diminish for sources that emit
in X-ray band. The main advantage of spacecraft navigation using X-ray sources is
that small sized detectors can be employed [25]. This provides savings in power and
mass for spacecraft operations. Another advantage of using X-ray sources is that
they are widely distributed. The geometric dispersion of pulsars in the sky is impor-
tant to enhance accuracy of three-dimensional position estimation since the observ-
ability of the source is an important issue. An important complication that must be
addressed in utilizing an X-ray source in a navigation system is the timing glitches
in its rotation rates. Of X-ray pulsars, ones that are bright and have extremely stable
and predictable rotation rates are suitable candidates for the purpose of navigation.
These sources are usually older pulsars that have rotation periods on the order of
several milliseconds. Figure 2.4 provides an image of the Crab Nebula and its pulsar
(PSR B0531+21), which is the brightest rotation-powered pulsar within the X-ray
band. The Crab pulsar shows high-flux X-ray emissions with known stable period.
Hence, it can be considered a suitable candidate for use in navigation.

2.3.4 History of Pulsar-Based Navigation

The first pulsar was observed in July 1967 by Bell and Hewish. In 1971, Reichley,
Downs, and Morris proposed using pulsar signals as a clock for Earth-based systems
[26]. In 1980, details of methods to determine pulse time of arrivals from pulsar
signals were provided by Downs and Reichley [27]. In the 1980s and 1990s, it was
demonstrated that several pulsars matched the quality of atomic clocks [12, 15, 16,
28]. Because of their stability, pulsars were considered as accurate celestial clocks,
suitable for navigation.
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Fig. 2.4 Composite optical/X-ray image of the Crab Nebula pulsar showing surrounding nebular
gasses stirred by the pulsar’s magnetic field and radiation. Photo courtesy of NASA

In 1974, Downs, a member of the telecommunication division of the Jet
Propulsion Laboratory (JPL), proposed a spacecraft navigation method based upon
employing radio signals from a pulsar [29]. Using 27 radio pulsars for navigation
over an integration time of 24 h, in [29], he showed that an absolute position ac-
curacy on the order of 150 km was attainable. This introductory paper on pulsar
navigation serves as the original basis for the work of other researchers in the field.

During the 1970s, pulsars with X-ray signature were discovered that emit sig-
nals within the X-ray band of 1–20 keV (2.5e17−4.8e18 Hz). In 1981, Chester and
Butman proposed using X-ray pulsars as an option to enhance Earth satellite navi-
gation [30]. Their research showed that by comparing the arrival times of pulses at a
spacecraft and at the Earth (via an Earth orbiting satellite), a three-dimensional po-
sition of the spacecraft can be determined. They reported that a day’s worth of data
from a small onboard X-ray detector yielded a three-dimensional absolute position
accurate to ∼150 km.

In 1988, Wallace studied the issues related to using celestial sources that emit ra-
dio emission, including pulsars, for navigation applications on Earth [31]. He stated
that the existence of other celestial radio sources obscured weak pulsar signals. As
expected, radio-based systems require large antennas to detect sources, which make
them impractical tools for spacecraft. Furthermore, the low signal intensity of ra-
dio sources requires long integration time to achieve an acceptable SNR. Also, the
small population of radio pulsars in the optical band of the spectrum severely limits
an optical pulsar-based navigation system.
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In 1993, as a part of the NRL-801 experiment for the Advanced Research and
Global Observation Satellite (ARGOS), Wood proposed a comprehensive approach
to X-ray navigation covering attitude, position, and time. This study employed X-ray
sources other than pulsars. As a part of the Naval Research Laboratory (NRL)
development of this study, Hanson produced a Ph.D. thesis in the field of X-ray
navigation in 1996 [32]. In his work, he studied attitude determination of spacecraft
using X-ray pulsars. He used practical data from the HEAO-A1 spacecraft. His ap-
proach was based on counting the number of received photons, fitting the data to
preknown curves and minimizing the Chi-squared error. He obtained roll estimates
with error bias equal to 0.32 deg and standard deviation of 0.030◦ using a single
detector and an error bias value equal to 0.012◦ with 0.0075◦ of standard deviation.
He also suggested autonomous timekeeping using X-ray sources by employing a
phase-locked-loop (PLL).

In 2004, a research group in Spain revealed a study on the feasibility of an abso-
lute navigation system based on radio and X-ray pulsars [33]. The group developed
some models of radio and X-ray pulsar signals, it proposed different algorithms for
timing estimation of these two categories of celestial sources, studied their perfor-
mance, and reported the possibility of obtaining absolute position accuracies on the
order of 106 meters [33].

In 2005, Sheikh, a member of NRL, produced his Ph.D. thesis in the field of
X-ray navigation [19, 34, 35]. His work was a part of a research called the X-ray
Navigation (XNAV), which was directed by the Defense Advanced Research
Projects Agency (DARPA). He proposed a navigation system based on X-ray
measurements used by an extended Kalman filter (EKF) for three-dimensional
position estimation [36, 37].

Woodfork suggested the use of X-ray pulsars for aiding GPS satellite orbit deter-
mination in his M.Sc. thesis in 2005 [38].

In 2009, Emadzadeh proposed a relative navigation algorithm based on use of
X-ray pulsar measurements in his Ph.D. thesis [39]. He has studied different aspects
of the signal processing techniques needed to obtain the X-ray pulsar measurements.
His dissertation is the main reference of the current book.

2.4 Summary

This chapter presents a concise overview of current space navigation methods.
It provides an introduction on different types of pulsars and their characteristics.
It suggest using X-ray pulsars to navigate in space for situations where current sys-
tems are not available or it is desirable to augment the current navigation solutions.
There are two main reasons that make X-ray pulsars interesting candidates for space
navigation. One is their stable periodic profile, and the other is that relatively small
size detectors are needed to detect the X-ray pulsar photons. The latter provides a
huge advantage for the spacecraft design procedure. A brief history of pulsar-based
navigation and previous research on this field is also discussed.



Chapter 3
Signal Modeling

3.1 Introduction

In this chapter, we present an overview of the X-ray pulsar-based navigation system.
We provide the mathematical tools needed to analyze the proposed system. We also
characterize the epoch folding procedure.

Section 3.2 describes the navigation problem and the proposed navigation so-
lution. In Sect. 3.3, we explain how X-ray pulsar detectors work. Based on the
presented X-ray detection mechanism, we use some mathematical tools to char-
acterize the pulsar signals in Sect. 3.4. Section 3.5 offers a clarifying remark on
pulsar signal modeling. We introduce and mathematically formulate the epoch fold-
ing procedure in Sect. 3.6. The effect of absolute velocity errors on epoch folding is
studied in Sect. 3.7. An algorithm is provided in Sect. 3.8 for numerical simulation
of the X-ray photon TOAs. To verify the analytical results, numerical examples are
presented in Sect. 3.9.

3.2 Proposed Navigation System Structure

First, we consider the relative navigation problem between two spacecraft. At the
end, we explain how the spacecraft absolute navigation problem can be addressed.

For relative position estimation, both the space vehicles must lock on the same
X-ray source, and detect the same signal emitted from it. The spacecraft located far-
ther away from the pulsar, receives a delayed version of the signal which is observed
by the spacecraft closer to the source. The distance between the space vehicles is
proportional to the time delay. The proposed approach is to periodically estimate the
time delay, and then use these estimates as measurements in a recursive algorithm
for position estimation. As it can be seen in Fig. 3.1, the relative distance projected
on the direction of the source, Δd, is related to the time delay, td, by

Δd = n ·Δx = ctd, (3.1)

where c is the speed of light, Δx the relative position vector, and n is the normalized
direction vector pointing to the source.

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
DOI 10.1007/978-1-4419-8017-5 3, c© Springer Science+Business Media, LLC 2011
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Fig. 3.1 Relative position between two spacecraft observing the same X-ray source
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Fig. 3.2 Structure of the proposed X-ray pulsar-based navigation system

The pulsar is far away compared to the relative separation of the spacecraft,
and the vehicles are assumed to be close enough. Hence, they see the source with
the same direction vector, and this vector is known. All the measurements are per-
formed in an inertial frame whose origin is the solar system barycenter (SSB). The
spacecraft must communicate constantly to share and analyze their data. This com-
munication channel can be used as an additional information source that can be
incorporated to enhance the navigation solution. For simplicity, it is assumed that
the cycle ambiguity problem does not arise. In other words, the signal passes the
projected distance between the spacecraft, Δd, in less than one pulsar cycle. Rela-
tivistic effects are negligible. The measurement noise variance is selected based on
the accuracy of the time delay estimates. On each spacecraft, an inertial measure-
ment unit (IMU) is to provide the acceleration measurements, which are converted
to the velocity and position data and are utilized by the Kalman filter. The time de-
lay estimates are in turn taken in as measurements by the Kalman filter to obtain
the navigation solution. The precision of relative range is based on the geometric
distribution of the set of employed pulsars over the sky, in much the same way as
the geometric distribution of GPS satellites determines the geometric dilution of
precision. The proposed navigation algorithm can be summarized into the following
stages (see Fig. 3.2).
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1. Signal detection using X-ray detectors (Chap. 3).
2. Pulse time delay estimation (Chaps. 4, 5, and 6).
3. Obtain the navigation solution utilizing a Kalman filter (Chap. 7).

Note that if the first spacecraft is at the SSB, the navigation problem reduces to
the absolute navigation problem of one spacecraft.

3.3 X-ray Detectors

X-ray detectors are designed based on measuring the time of arrival (TOA) of
photons when they hit the detecting material [33]. To obtain the X-ay pulsar mea-
surements precisely, a low power detection system is required that is capable of
measuring the photon time of arrivals with sub microsecond accuracy. Detec-
tors must have a large detection area, low background noise, and be lightweight.
Furthermore, they need to not require heavy and expensive cooling systems. Previ-
ous satellite missions have used X-ray detectors with gas-based technology. These
detectors are prone to leaks in the entrance window [25]. Another disadvantage of
the detector is that, although made of low density gas, they can be rather heavy be-
cause of the massive frames they need to contain the gas. Because of these problems,
an alternative technology is much of interest to make X-ray detectors.

As part of DARPA XNAV program, NRL has developed a new technology for
the next generation of X-ray silicon-based detectors that achieve all of the aforemen-
tioned capabilities [25]. These detectors are made of silicon PIN (p-type, intrinsic,
and n-type) diodes that are reverse-biased with high voltage so that the whole sili-
con volume does not have any free charge carrier. Therefore, when an X-ray photon
hits the silicon, it will create a large number of electrons and holes. These elec-
trons and holes drift under the electric field to the surface. Then, they are collected
into preamplifiers and generate signals whose amplitudes are proportional to the
energy deposited by the X-ray photons. These signals are processed by a shaping
amplifier and a discriminator to provide the time of arrival of photons. The time
resolution of the X-ray detector is dictated by the drift time of the electrons across
the thickness of the detector. The drift time in silicon at room temperature is 20
ns/mm [25]. The thickness of the detectors determines if they can efficiently detect
higher energy X-rays. To obtain more accurate solutions for X-ray-based navigation,
many X-ray photons must be collected. Therefore, the energy range of detectors
must be maximized, meaning they must be made as thick as possible. The thickest
silicon detectors currently manufactured are 2 mm thick [25]. More details of the
silicon-based technology, including required hardware for post-processing of data,
are explained in [25].

Based on this photon detection approach, mathematical models describing the
X-ray pulsar signals are provided in the next section.
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3.4 X-ray Pulsar Signal

Let (t0,t f ) be the observation interval and Tobs = t f − t0. Furthermore, let ti be the
TOA of the ith photon and the set {t1,t2, . . . ,tM}, denoted by {ti}M

i=1, be a random
sequence in increasing order,

t0 ≤ t1 < t2 < · · ·< tM ≤ t f , (3.2)

where the number of detected photons in (t0,t f ), M, is also a random variable.
Let t0 = 0 and N0 = 0 then

Nt = max{n, tn ≤ t} (3.3)

is called a point process, denoted by {Nt , t > 0}. Note that Nt is the number of
detected photons in the interval (0,t). A point process {Nt , t > 0} is called a
non-homogeneous Poisson process (NHPP) with a time-varying rate λ (t) ≥ 0 if
it satisfies the following conditions [40].

1. The probability of detecting one photon in a time interval Δt, is given by

P(Nt+Δt −Nt = 1) = λ (t)Δt when Δt→ 0. (3.4)

2. The probability of detecting more than one photon in Δt is

P(Nt+Δt −Nt ≥ 2) = 0 when Δt→ 0. (3.5)

3. Non-overlapping increments are independent, where

Nt −Ns, t > s (3.6)

is the increment of the stochastic process {Nt ,t > 0}.
For a fixed t, the number of detected photons in (0,t), Nt , is a Poisson random

variable with parameter
∫ t

0 λ (ξ )dξ [40], that is

P(Nt = k) =

(∫ t

0
λ (ξ )dξ

)k

exp

(

−
∫ t

0
λ (ξ )dξ

)

k!
(3.7)

and its mean and variance are

E[Nt ] = var[Nt ]

=
∫ t

0
λ (ξ )dξ

� Λ(t). (3.8)
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The number of detected X-ray photons in any fixed time interval (t,s), Nt −Ns,
is a Poisson random variable as well with parameter

∫ t
s λ (ξ )dξ [40], i.e.,

P(Nt −Ns = k) =

(∫ t

s
λ (ξ )dξ

)k

exp

(

−
∫ t

s
λ (ξ )dξ

)

k!
. (3.9)

The probability density function of the photon TOAs is presented by the follow-
ing theorem [41].

Theorem 3.1. The M-dimensional joint probability density function (pdf) of the
TOAs set, {ti}M

i=1, denoted by p
({ti}M

i=1,M
)
, is given by

p
({ti}M

i=1,M
)

=

⎧
⎪⎨

⎪⎩

e−Λ
M

∏
i=1

λ (ti) M ≥ 1

e−Λ M = 0,

(3.10)

where

Λ � Λ(t f )−Λ(t0) (3.11)

is called the integrated rate of the Poisson process.

Proof. To calculate p({ti}M
i=1,M), consider non-overlapping infinitesimal intervals

of width Δti symmetric about ti, i = 1,2, ...,M (see Fig. 3.3). The TOAs pdf, satisfies
the following,

P

[

τ1 ∈
(

t1− Δt1
2

,t1 +
Δt1
2

)

, . . . ,τM ∈
(

tM− ΔtM
2

,tM +
ΔtM

2

)]

=
∫ t1+Δt1/2

t1−Δt1/2
· · ·
∫ tM+ΔtM/2

tM−ΔtM/2
p({τi}M

i=1,M)dτ1 · · ·dτM . (3.12)

The expression on the left-hand side of (3.12) is the probability of detecting ex-
actly one photon in each one of the intervals and none outside them. In other words,

P

[

τ1 ∈
(

t1− Δt1
2

,t1 +
Δt1
2

)

, . . . ,τM ∈
(

tM− ΔtM
2

,tM +
ΔtM

2

)]

= P(Nt1−Δt1/2−Nt0 = 0) ·P(Nt1+Δt1/2−Nt1−Δt1/2 = 1) ·
...

P(NtM+ΔtM/2−NtM−ΔtM/2 = 1) ·P(Ntf −NtM+ΔtM/2 = 0). (3.13)

0t tf

2tΔ

2t t

1tΔ

1t

1−Δ Mt

1−Mt

MtΔ

Mt

Fig. 3.3 A sample realization of a Poisson point process
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Using (3.9), the probability of receiving M = 0 photon in the interval (a,b) is
given by

P(Nb−Na = 0) = exp

(

−
∫ b

a
λ (t)dt

)

. (3.14)

Therefore, by letting Δti→ 0 for all i, and substituting (3.4) and (3.14) into the
right-hand side of (3.13), it can be simplified as

P

[

τ1 ∈
(

t1− Δt1
2

,t1 +
Δt1
2

)

, . . . ,τM ∈
(

tM− ΔtM
2

,tM +
ΔtM

2

)]

= e−Λ
M

∏
i=1

λ (ti)Δti, (3.15)

where Λ is given in (3.11).
On the other hand, as Δti→ 0 for all i, right side of (3.12) equals

∫ t1+Δt1/2

t1−Δt1/2
· · ·
∫ tM+ΔtM/2

tM−ΔtM/2
p
({τi}M

i=1,M
)

dτ1 · · ·dτM = p
({ti}M

i=1,M
) M

∏
i=1

Δti. (3.16)

Therefore, since (3.15) and (3.16) are equal, the joint pdf p
({ti}M

i=1,M
)

is
obtained for M ≥ 1,

p
({ti}M

i=1,M
)

= e−Λ
M

∏
i=1

λ (ti). (3.17)

�

The overall rate function λ (t) ≥ 0, represents the aggregate rate of all arriving
photons from the X-ray pulsar and background,

λ (t) = λb + λsh
(
φdet(t)

)
(ph/s), (3.18)

where h(φ) is the periodic pulsar profile, φdet(t) the detected phase, and, λb and λs

are the known effective background and source arrival rates, respectively [42]. The
periodic function h(φ) is usually defined on the phase interval φ ∈ [0,1) (cycle), and
then its definition is extended to the entire real line by letting h(φ +n)= h(φ), where
n is an integer. In other words, each period of the pulsar intensity is represented by
one cycle. Furthermore, the function h(φ) is non-negative and normalized according
to
∫ 1

0 h(φ)dφ = 1, and minφ h(φ) = 0. The shape of the pulsar profile and its period
are known. Figure 3.4 shows the profile of the Crab pulsar (PSR B0531+21) in the
X-ray band (1–15 keV), created using multiple observations with the USA experi-
ment onboard the Advanced Research and Global Observation Satellite (ARGOS)
vehicle [19].
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Fig. 3.4 Crab pulsar profile obtained by ARGOS

The detected rate constants λb and λs are functions of the detector specifica-
tions. Specifically, they are proportional to the collective area, A, and the detector
efficiency, η , as

λb = b ·η ·A (3.19)

λs = s ·η ·A, (3.20)

where b is the background rate and s is the source flux.
Phase at the detector referenced to the beginning of the observation, t0, consists

of an initial phase, φ0 ∈ [0,1), and the accumulated phase

φdet(t) = φ0 +
∫ t

t0
f (τ)dτ, (3.21)

where fo(t) is the observed signal frequency, which can be decomposed into two
different components: X-ray source frequency, fs, and the Doppler frequency shift,
fd(t). In other words,

fo(t) = fs + fd(t). (3.22)

The Doppler frequency fd(t) is due to the detector’s velocity, v(t), and is
given by

fd(t) = fs
v(t)

c
, (3.23)

where c is the speed of light. Consequently, the detected phase equals

φdet(t) = φ0 + fs(t− t0)+
∫ t

t0
fd(τ)dτ. (3.24)



20 3 Signal Modeling

Note that the pulsar is located far deep in space (at infinite distance from the
detector). Furthermore, the observed phase is calculated referenced to the beginning
of the observation time, and not the time that photons have left the X-ray source.
Hence, although h(·) is periodic, the phase ambiguity issue does not arise.

3.4.1 Constant-Frequency Model

Assuming that the detector’s velocity v(t) = v is a known constant, then

φdet(t) = φ0 +(t− t0) fo, (3.25)

where

fo =
(

1 +
v
c

)
fs. (3.26)

Hence, from (3.18), the rate function is

λ (t;φ0, fo) = λb + λs h
(
φ0 +(t− t0) fo

)
. (3.27)

This model is used when the spacecraft moves in a constant radial speed and the
observed pulse frequency, fo, does not change over time or its change is negligible.
Since h(·) is strictly periodic and its argument is an affine function of time, λ (t)
becomes strictly periodic as well.

3.4.2 Time-Dependent-Frequency Model

If v(t) is not constant, fd(t) is a time dependent, and

φd(t) =
∫ t

t0
fd(τ)dτ (3.28)

is a nonlinear function of time, which results in a quasi-periodic λ (t). This is the
case when the radial speed of the spacecraft, v(t), changes significantly over the
observation time. Hence, the observed phase at the detector is

φdet(t) = φ0 +(t− t0) fs +φd(t) (3.29)

and the rate function becomes

λ
(
t;φ0,v(t)

)
= λb +λs h

(
φ0 +(t− t0) fs +φd(t)

)
. (3.30)

In (3.30), presence of the nonlinear term, φd(t), makes the Poisson rate function
be quasi-periodic.
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3.5 Discussion

Using the TOA pdf presented in (3.10), it can be verified that

∫

Ω
p
({τi}M

i=1,M
)

dτ1 · · ·dτM = 1, (3.31)

where Ω is the sure event, i.e., the event that any number of photons occur at any
time instant in the interval [t0,t f ]. Note

∫

Ω
p
({τi}M

i=1,M
)

dτ1 · · ·dτM =
∞

∑
M=0

∫

ΩM

p
({τi}M

i=1,M
)

dτ1 · · ·dτM, (3.32)

where ΩM is the event of receiving M photons at any M different increasing
time instants {t1,t2, . . . ,tM} in the interval [t0,t f ]. The probability of event ΩM is
given by

∫

ΩM

p
({τi}M

i=1,M
)

dτ1 . . .dτM

= P[t1 = t1 ∈ (t0,t f ), t2 = t2 ∈ (t1,t f ), . . . , tM = tM ∈ (tM−1,t f )]. (3.33)

Note that the sequence {t1,t2, . . . ,tM} in (3.33) is in increasing order. Since there
exists M! permutations of ti, for a fixed M, the probability that M number of ti’s
occur in no special order, is M! times that of the sequence occurring in increasing
order [41]. Hence,

P[t1 = t1 ∈ (t0,t f ), t2 = t2 ∈ (t0,t f ), , . . . , tM = tM ∈ (t0,t f )]

= M! ·
∫

ΩM

p
({τi}M

i=1,M
)

dτ1 · · ·dτM . (3.34)

Using (3.10), the left side of (3.34) can be expressed as

∫ t f

t0

∫ t f

t0
· · ·
∫ t f

t0
p
({τi}M

i=1,M
)

dτ1 · · ·dτM = e−Λ
(∫ t f

t0
λ (τ)dτ

)M

= e−ΛΛM . (3.35)

Therefore, from (3.34) and (3.35), for a fixed M

∫

ΩM

p
({τi}M

i=1,M
)

dτ1 · · ·dτM =
Λ M

M!
· e−Λ . (3.36)



22 3 Signal Modeling

Now, using (3.32) and (3.36)

∫

Ω
p
({τi}M

i=1,M
)

dτ1 · · ·dτM = e−Λ
∞

∑
M=0

Λ M

M!

= e−Λ · eΛ

= 1. (3.37)

3.6 Epoch Folding

A feasible question is how to recover the pulsar rate function employing the mea-
sured photon TOAs. The procedure of recovering the X-ray pulsar intensity function
from measured photon time tags is called epoch folding. It is performed as follows:
all the time tags during the observation time are collected. Then they are folded
back into a single time interval equal to one pulse period, meaning that their mod-
ulus with one time period is calculated. Afterward, the period duration is divided
into some equal-length bins and the number of photons in each bin is counted (see
Fig. 3.5). Finally, the computed photon counts are normalized and the empirical pul-
sar profile is derived. Epoch folding is mathematically formulated in the rest of this
section.

Assume that the observation time consists of NP pulsar periods. In other words,
Tobs ≈ NpP, where P is the pulsar period. Let c(ti) be the number of detected pho-
tons in the ith bin whose center is ti. Also, assume that the bin size is Tb seconds
and the number of time bins in one period is Nb, i.e., Tb = P/Nb. Using (3.8), for

1st Cycle

2nd Cycle
kth Cycle Np

th Cycle

TOA folding

t
0t 0t P+

bT bTbT bT

1

( )
pN

j i
j

c t
=
Σ{

ft
t

P

0t

PP

Fig. 3.5 Epoch folding: All [color-coded] photon TOAs are folded back into the first cycle [t0,
t0 + P], and it is divided to some equal-length bins. Then, the number of photons in each bin is
counted and normalized
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infinitesimal Tb values, c(ti) is a Poisson random variable with the following mean
and variance,

E[c(ti)] = var[c(ti)]

= λ (ti)Tb. (3.38)

The bin size, Tb, must be chosen small enough such that (3.38) is not violated.
Now, consider the random variable λ̆ (ti), named empirical rate function, which rep-
resents the normalized number of photons resulted from folding back Np epochs of
time tags into the ith bin,

λ̆(ti) =
1

NpTb

Np

∑
j=1

c j(ti). (3.39)

Then, the relation between λ̆ (ti) and λ (ti) is given in the following theorem [43].

Theorem 3.2. Let λ (ti), 0 ≤ ti ≤ P, be the true rate function, and λ̆(ti) be the
empirical rate function, obtained from an epoch folding procedure. Then,

λ̆ (ti) = λ (ti)+ n̆(ti) when Tobs→ ∞, (3.40)

where n̆(ti) is referred to as the epoch folding noise. The noise, n̆(ti), is uncorrelated
and for long observation times, its mean and variance are given by

E[n̆(ti)] = 0 (3.41)

var[n̆(ti)] =
Nb

Tobs
λ (ti). (3.42)

Proof. Consider the average random variable, C̆(ti), which obtained from folding
back Np epochs of time tags into ith bin

C̆(ti) =
1

Np

Np

∑
j=1

c j(ti), (3.43)

where j is the epoch’s index. Then, from (3.38), as Np → ∞ (or equivalently
Tobs→ ∞),

E[C̆(ti)] = λ (ti)Tb (3.44)

var
[√

Np C̆(ti)
]
= λ (ti)Tb. (3.45)

Therefore, using (3.39)

E[λ̆(ti)] = λ (ti) (3.46)
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Fig. 3.6 Two photon TOAs

t

bT

it

bT

kt

var[λ̆ (ti)] =
λ (ti)
NpTb

=
Nb

Tobs
λ (ti). (3.47)

As a result of (3.46) and (3.47), the empirical rate function can be modeled by
(3.40), (3.41), and (3.42).

To prove that n̆(ti) is uncorrelated, the first and second moments of Nt are calcu-
lated using (3.8),

E[Nt ] =
∫ t

0
λ (τ)dτ (3.48)

E[N2
t ] =

(∫ t

0
λ (τ)dτ

)2

+
∫ t

0
λ (τ)dτ. (3.49)

Consider two time instants ti and tk, where tk > ti (see Fig. 3.6). Because non-
overlapping increments of Nt are independent,

E[Nti Ntk ] = E[Nti(Ntk −Nti + Nti)]

= E[Nti(Ntk −Nti)]+ E[N2
ti ]

= E[Nti ]E[Ntk −Nti ]+ E[N2
ti ]. (3.50)

Then, using (3.48) and (3.49)

E[Nti Ntk ] =
∫ ti

0
λ (τ)dτ

(∫ tk

ti
λ (τ)dτ +

∫ ti

0
λ (τ)dτ + 1

)

. (3.51)

For infinitesimal values of Tb, the number of detected photons in ith bin, i.e.,
c(ti), can be approximated by

c(ti)� Nti+Tb/2−Nti−Tb/2. (3.52)

Hence,

E[c(ti)c(tk)] = E[(Nti+Tb/2−Nti−Tb/2)(Ntk+Tb/2−Ntk−Tb/2)]

= E[Nti+Tb/2Ntk+Tb/2]−E[Nti+Tb/2Ntk−Tb/2]

−E[Nti−Tb/2Ntk+Tb/2]+ E[Nti−Tb/2Ntk−Tb/2]. (3.53)
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Calculating each term in (3.53), using (3.51), it results in

E[c(ti)c(tk)] =
∫ tk+Tb/2

tk−Tb/2
λ (τ)dτ

(∫ ti+Tb/2

0
λ (τ)dτ−

∫ ti−Tb/2

0
λ (τ)dτ

)

=
∫ tk+Tb/2

tk−Tb/2
λ (τ)dτ

∫ ti+Tb/2

ti−Tb/2
λ (τ)dτ (3.54)

which can be approximated by

E[c(ti)c(tk)]≈ T 2
b λ (ti)λ (tk) (3.55)

for infinitesimal values of Tb.
As a result, the auto-correlation function of λ̆ (ti) can be calculated from (3.39)

E[λ̆ (ti)λ̆ (tk)] =
(

1
NpTb

)2

E

[
Np

∑
j=1

c j(ti)
Np

∑
j=1

c j(tk)

]

=
(

1
NpTb

)2 Np

∑
j=1

Np

∑
r=1

E[c j(ti)cr(tk)]

= λ (ti)λ (tk). (3.56)

On the other hand, noting that n̆(t) is zero mean, (3.40) leads to

E[λ̆ (ti)λ̆ (tk)] = λ (ti)λ (tk)+ E[n̆(ti)n̆(tk)]. (3.57)

Then, from (3.56) and (3.57), the auto correlation function of n̆(t) is given by

E[n̆(ti)n̆(tk)] = 0. (3.58)

�
To perform epoch folding, the observed pulsar frequency, fo = 1/P, must be con-

stant and known during the observation time. In other words, the detector velocity,
v, must be a known constant. Since in practice the velocity is not perfectly known,
the effect of velocity errors on epoch folding is studied in the next section.

3.7 Epoch Folding in Presence of Velocity Errors

As mentioned, it is necessary to investigate how much the epoch folding procedure
is tolerant to possible errors in the spacecraft velocity data. Let the detector velocity
error be Δv. From (3.26), this error causes the observed frequency to change as

Δ fo = fs
Δv
c

. (3.59)
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Since P = 1/ fo, Δ fo makes P change by

ΔP =−Δ fo

f 2
o

(3.60)

which can be simplified using (3.59), as

ΔP =− fs

c f 2
o

Δv. (3.61)

Hence, the observed pulsar period will be

P̌ = P+ ΔP. (3.62)

This pulsar period, which is ΔP seconds off from the correct one, will be used to
fold back the photon TOAs into one cycle (see Fig. 3.7). Assuming the number of
bins is still Nb, the new bin size is given by

Ťb =
P̌
Nb

. (3.63)

Furthermore, the number of epochs to be folded back is

Ňp =
Tobs

P̌
. (3.64)

The error ΔP, can be translated to the phase domain

Δφ =
ΔP
P

= foΔP (3.65)

and using (3.61), it can be simplified by

Δφ =− fs

c fo
Δv

≈−1
c

Δv. (3.66)

ft
t

0t

PΔ 2 PΔ 3 PΔ

P P P

P P P Intensity function

Fig. 3.7 Epoch folding in the presence of the spacecraft velocity error
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From (3.38), this bias error in phase changes the statistical properties of c j(ti) as
follows.

E[c j(ti)] = var[c j(ti)]

= λ
(
ti;φ0 +( j−1)Δφ

)
Ťb, j = 1,2, . . . , Ňp (3.67)

In other words, the mean of folded back photon counts from the jth cycle is
shifted by ( j− 1)Δφ cycle. Thus, the empirical rate function equals the follow-
ing [44].

λ̆(ti) =
1

ŇpŤb

Ňp

∑
j=1

c j(ti)

=
1

Ňp

Ňp

∑
j=1

λ
(
ti;φ0 +( j−1)Δφ

)
+ n̆(ti), (3.68)

where

E[n̆(ti)] = 0 (3.69)

and

var[n̆(ti)] =
1

Ň2
pŤb

Ňp

∑
j=1

λ
(
ti;φ0 +( j−1)Δφ

)
. (3.70)

From (3.70) it is clear that if ( j−1)Δφ is always smaller than the bin size, (3.70)
boils down to the result given in (3.40). That is, if

|Δφ |(Ňp−1)≈ |Δφ |Ňp <
1

Nb
(3.71)

or, using (3.66)

Δv <
c

NbŇp
(3.72)

then, the empirical function satisfactorily represents the true rate function. The up-
per bound in (3.72) shows how much error on the spacecraft velocity data can be
tolerated by the epoch folding procedure. If the velocity error exceeds the bound, as
(3.70) shows, the empirical rate function will be a deteriorated version of the true
function. The deterioration shows as a shift in the initial phase, and a change in the
magnitude of the rate function.

An interesting point (3.72) shows is that the upper bound is inversely proportional
to the number of bins Nb. But one should be careful in choosing Nb too small,
because (3.38) must not be violated.
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3.8 Generating Photon TOAs

To assess the analytical results, the X-ray photon TOAs corresponding to a particular
known pulsar rate function λ (t) must be simulated. To realize corresponding TOAs,
an algorithm based on inversion of the integrated rate function is used [43, 45].

Let U be a uniform random variable in the interval (0,1). Define

g(u) = F−1
y (u), (3.73)

where F−1
y (·) is the inverse function of Fy(·). Then, Y = g(U) is a random variable

with the distribution Fy(y) [46]. That is,

If y = F−1
y (U) then P{Y ≤ y}= Fy(y). (3.74)

Now let Fz|tn=t(z|tn = t) be the probability distribution of Z = tn+1− tn given
tn = t, where ti is the TOA of the ith photon. Then,

P(Z > z|tn = t) = 1−Fz|tn=t(z|tn = t). (3.75)

Also, using (3.9)

P(Z > z|tn = t) = P(Nt+z−Nt = 0)

= exp

(

−
∫ t+z

t
λ (t)dt

)

= exp

(

−(Λ(t + z)−Λ(t)
)
)

, (3.76)

where Λ(t) is defined in (3.8). Therefore, from (3.75) and (3.76)

Fz|tn=t(z|tn = t) = 1− exp{−(Λ(t + z)−Λ(t)
)} (3.77)

and

F−1
z|tn=t(z|tn = t) =−t +Λ−1(Λ(t)− ln(1− z),

)
(3.78)

where F−1
z|tn=t(·) is the inverse function of Fz|tn=t(·). Hence, given tn = t, Z can be

generated as

Z =−t +Λ−1(Λ(t)− ln(1−U)
)
. (3.79)

As 1−U is also a uniform random variable in the interval (0,1), without loss of
generality, (3.79) can be restated as

Z =−t +Λ−1(Λ(t)− lnU
)
. (3.80)
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Also, note that if X is an exponential random variable, described by the following
pdf,

p(x) =

{
λee−λex x≥ 0

0 otherwise
(3.81)

then, its probability distribution is given by

Fx(x) = 1− e−λex (3.82)

and

F−1
x (x) =− 1

λe
ln(1− x). (3.83)

Therefore, from (3.74)

X =− 1
λe

ln(1−U) (3.84)

is an exponential random variable with parameter λe. As 1−U is also a uniform
random variable in the interval (0,1), it can be concluded that

X =− 1
λe

lnU (3.85)

is an exponential random variable with parameter λe. Thus, the term− lnU in (3.80)
is an exponential random variable, named E , with parameter λe = 1. As a result,
using (3.80), given t = tn, tn+1 can be generated as

tn+1 = tn + Z

= Λ−1(Λ(tn)+ E
)
. (3.86)

The preceding discussion is concluded into Algorithm 3.1.

Algorithm 3.1 TOA Simulation:
• L← 0 (L is an auxiliary variable)
• k← 0 (k is a counter)
• WHILE tk ≤ t f

– Generate an exponential random variable, E, with parameter λe = 1.
– k← k +1
– L←Λ−1

(
Λ(L)+E

)

– tk← L

• END
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3.9 Numerical Examples

The Crab pulsar (PSR B0531+21) is selected to verify the analytical results. The
pulsar period is 33.5 ms, and its profile, h(φ), is shown in Fig. 3.8. The constant
arrival rates are chosen to be λb = 5 and λs = 15 ph/s. The detector’s velocity is
assumed to be v = 3 km/s; and the initial phase observed at the first detector is
φ0 = 0.16 cycle.

A Monte Carlo simulation was performed in which 500 independent realization
of photon TOAs were processed. Photon TOAs were generated as realizations of a
non-homogeneous Poisson process, as explained in Algorithm 3.1. The accumulated
rate function used to generate the TOAs, Λ , is plotted in Fig. 3.8.

An observation time of Tobs = 100 s is selected to verify the epoch folding
results. The photon time tags are folded back into one single pulsar cycle which
is divided into Nb = 1,024 bins, and the rate functions on each detector are de-
rived using (3.39). The empirical rate function along with the true one is plotted
in Fig. 3.9. As the plots show, the empirical rate function converges to the true
function.

In Fig. 3.9, the variance of n̆(t), obtained via simulation, is also plotted and
compared to the analytical variance for each detector. The plots show an excellent
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Fig. 3.8 Crab pulsar profile, and Λ(t) for λb = 5 and λs = 15 ph/s
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Fig. 3.9 Pulsar rate function, and the variance of n̆(t) for Tobs = 100 s

agreement between the simulation and the analytical value, given in (3.42). The
difference between these two plots gets larger at the time instants where there is a
sharp change in the rate function. This phenomenon is due to the limited number
of time bins and finite observation time which violate (3.38). In other words, if the
observation time is infinitely long and the time bins are infinitely small then these
jumps in empirical graphs will vanish.

The auto-correlation of λ̆ (t), E[λ̆(t)λ̆ (t +D0)], is calculated numerically for the
time delay D0 = P/4 second, where P is the pulsar observed period. The plot is
shown in Fig. 3.10, and it verifies that E[λ̆(t)λ̆ (t + D0)] = λ (t)λ (t + D0). This
means that the epoch folding noise, n̆(t), is uncorrelated.

The effect of spacecraft imprecise absolute velocity data on epoch folding is
studied as well. The velocity error is intentionally chosen to be big: Δv = 1,000 m/s.
For the selected parameters, the upper bound (3.72) roughly equals 10 m/s. Since
the velocity error is bigger than the bound, the empirical rate function and the noise
variance are expected to be deteriorated as opposed to the case where the veloc-
ity is perfectly known. Figure 3.11 verifies this fact. Comparing the empirical rate
function to the true one shows that it is shifted, and its peak is shortened and flat-
tened. The figure also verifies that the variance of the epoch folding noise is shifted
because of the velocity error.
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Fig. 3.10 Autocorrelation of λ̆ (t) for D0 = P/4
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Fig. 3.11 λ̆ (t) and the variance of n̆(t) when Δv = 1,000 m/s
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3.10 Summary

In this chapter, we offer an overview of the proposed navigation system structure.
We explain how by estimation of the time delay between the X-ray pulsar signals,
the spacecraft relative or absolute position can be estimated. More detailed math-
ematical formulation of the estimation problem, and our proposed solutions to the
problem will be presented in the following chapters. We also suggest using IMUs to
provide the spacecraft acceleration data. We explain how based on time tagging the
photon time of arrivals, X-ray pulsar detectors work. Using the presented detection
mechanism, we develop the mathematical models needed to characterize the pulsar
signals. We formulate and analyze the epoch folding procedure and show how it
results in recovering the pulsar intensity function. We investigate how errors on the
spacecraft velocity data can affect the epoch folding, and show that they result in
recovering a deteriorated rate function. Finally, we examine the theoretical results
via numerical simulations.





Chapter 4
Pulse Delay Estimation

4.1 Introduction

As explained in Chap. 3, the navigation system measurement is obtained through
estimation of the time delay between the received signals. The delay estimation
problem plays the most important role in the navigation system. In this chapter, we
study this problem in more detail.

Section 4.2 offers a mathematical formulation of the delay estimation problem.
In Sects. 4.3 and 4.4, we present a lower bound on the variance of the estimation
error, called the Cramér–Rao lower bound (CRLB). Some numerical examples on
calculation of the CRLB is also given in Sect. 4.5.

4.2 Pulse Delay Estimation

Let {t(1)
i }M1

i=1 be the measured photon TOAs at the first detector. This TOA set cor-
responds to the following rate function.

λ1(t;φ1) = λb +λs h
(
φ1 +(t− t0) f1

)
(4.1)

At the second spacecraft, a different TOA set is measured, {t(2)
i }M2

i=1, which cor-
responds to the delayed rate function observed by the first detector

λ2(t;φ1) = λb + λs h
(
φ1 +(t− t0− te− tx) f2

)
, (4.2)

where tx is the true time delay between the detected rate functions, and te is the
differential time between clocks [47]. Let td = te + tx, and define φ2 as

φ2 � φ1− f2td. (4.3)

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
DOI 10.1007/978-1-4419-8017-5 4, c© Springer Science+Business Media, LLC 2011
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Then, the rate function λ2(·) in (4.2) can be simplified as

λ2(t;φ2) = λb + λsh
(
φ2 +(t− t0) f2

)
. (4.4)

Note that f1 and f2 are observed pulsar frequencies. To construct the measure-
ments for the Kalman filter, td must be estimated.

To estimate the pulse delay, td, φ1 and φ2 will be estimated on each detector. Then,
using (4.3), td can be found. We have proposed two different methods for estimation
of the pulsar intensity function’s initial phase, and analyzed their characteristics.

1. Recovering the pulsar rate functions at each detector through the epoch folding
procedure represents the first strategy. The empirical rate function will be used
for estimation of the initial phase values. Two different pulse delay estimators
based on epoch folding are introduced, and their performance against the CRLB
is analyzed. One uses the cross-correlation function between the empirical and
true photon intensity functions [44]. The other employs a least-squares criterion
[43, 44, 48]. Details are given in Chap. 5.

2. The second strategy is based on the direct use of the measured photon TOAs. To
estimate the unknown parameters (initial phase values and Doppler frequencies),
a maximum likelihood (ML) estimation problem is formulated using the pdf of
the photon time tags [43, 49]. Different aspects of this approach are explained in
Chap. 6.

4.3 CRLB

Being able to place a lower bound on the variance of any unbiased estimator is
extremely useful in practice. It allows one to assert if the estimator is the minimum
variance estimator and provides a benchmark against which the performance of any
unbiased estimator can be compared. An estimator that is unbiased and attains the
CRLB is said to be efficient, meaning that it efficiently uses the data. The CRLB is
stated in the following theorem [50].

Theorem 4.1. Let p(x;θ ) be the probability density function (or probability mass
function) of the observed random vector, x, which is parameterized by the unknown
parameter θ . A semicolon is used to denote the dependence. Assume that p(x;θ )
satisfies the following “regularity” conditions

E

[
∂

∂θ
ln p(x;θ )

]

= 0, for all θ , (4.5)

where θ is the unknown parameter vector, and the expectation is taken with respect
to p(x;θ ). Then, the covariance matrix of any unbiased estimator θ̂ satisfies

cov(θ̂)≥ I−1(θ ), (4.6)
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where the inequality “≥” means
(
cov(θ̂ )− I−1(θ )

)
is positive semidefinite and

I(θ ) is the Fisher matrix given by

[I(θ)]i j =−E

[
∂ 2

∂θi∂θ j
ln p(x;θ)

]

, (4.7)

where the derivatives are evaluated at the true value of θ and the expectation is
taken with respect to p(x;θ ). The matrix I−1(θ ) is called the Cramér–Rao lower
bound.

Now consider the following pulsar rate function, which corresponds to the mea-
sured TOA set on the detector.

λ (t;φ0, fo) = λb + λsh
(
φ0 +(t− t0) fo

)
. (4.8)

Assuming that φ0 and fo are not known, the aim is to find the CRLB for es-
timation of these parameters. The result is presented in the following theorem
[51, 52].

Theorem 4.2. Let

θ �
(
φ0 fo

)T
(4.9)

be the unknown parameters vector. The Fisher matrix and its inverse (CRLB) for
estimation of θ in (4.8) are given by

I(θ ) =
Ip

6

(
6Tobs 3T 2

obs

3T 2
obs 2T 3

obs

)

, (4.10)

where

Ip �
∫ 1

0

[λsh′(φ)]2

λb + λsh(φ)
dφ . (4.11)

Therefore,

CRLB(θ ) = I−1(θ)

=
2
Ip

(
2/Tobs −3/T2

obs

−3/T2
obs 6/T 3

obs

)

. (4.12)

Proof. Let θ1 and θ2 be the elements of the vector θ (this notation is used for
simplicity). To derive the CRLB, the photon TOA measurements are transformed
into another set of data containing the number of detected photons. This new
data set is formed by dividing the observation time into N number of bins whose
length is Δt and by placing the number of counted photons in each bin into the
vector

x =
(
x1 x2 · · · xN

)T
(4.13)



38 4 Pulse Delay Estimation
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Fig. 4.1 Binning the observation time

as shown in Fig. 4.1. For sufficiently small Δt, the rate of arrival in nth bin can be
assumed to be constant:

λn(θ)≈ 1
Δt

∫ t0+nΔt

t0+(n−1)Δt
λ (t;θ )dt. (4.14)

The bin count xn is a Poisson random variable whose probability is presented by

p(xn = k;θ ) =

(
λn(θ )Δt

)k

k!
exp

(−λn(θ)Δt
)
, k = 0,1,2, . . . (4.15)

and its mean and variance are

E [xn;θ ] = var(xn;θ)
= λn(θ )Δt. (4.16)

As xn random variables are independent, their joint probability mass function
(pmf) equals

p(x;θ) =
N

∏
n=1

p(xn;θ)

=
N

∏
n=1

(
λn(θ )Δt

)xn

xn!
exp

(−λn(θ )Δt
)
. (4.17)

To derive the CRLB using (4.17), first, it must be checked if the regularity con-
dition (4.5) holds. Therefore, the natural logarithm of (4.17) must be calculated

ln p(x;θ) =
N−1

∑
n=0

(
xn ln[λn(θ )Δt]−λn(θ )Δt− ln(xn!)

)
. (4.18)

The derivative of (4.18) with respect to θ equals

∂
∂θ

ln p(x;θ) =
N−1

∑
n=0

(

xn · 1
λn(θ)Δt

· ∂
∂θ

λn(θ)Δt− ∂
∂θ

λn(θ )Δt

)

(4.19)



4.3 CRLB 39

and its expectation is given by

E

[
∂

∂θ
ln p(x;θ)

]

=
N−1

∑
n=0

(

E[xn] · 1
λn(θ )Δt

· ∂
∂θ

λn(θ )Δt− ∂
∂θ

λn(θ)Δt

)

=
N−1

∑
n=0

(

λn(θ )Δt · 1
λn(θ )Δt

· ∂
∂θ

λn(θ )Δt− ∂
∂θ

λn(θ)Δt

)

= 0. (4.20)

Hence, the regularity conditions (4.5) hold.
To obtain the CRLB, the Fisher matrix I(θ ) must be found. From (4.7) and (4.16),

the matrix elements, Ii j, are given by

Ii j = −E

[
∂ 2

∂θi∂θ j
ln p(x;θ )

]

=
N−1

∑
n=0

(

−E[xn] · ∂ 2

∂θi∂θ j
ln[λn(θ )Δt]+

∂ 2

∂θi∂θ j
λn(θ )Δt

)

=
N−1

∑
n=0

(

− (
λn(θ)Δt

)
{

1
λn(θ)Δt

· ∂ 2

∂θi∂θ j
λn(θ )Δt

−
[

1
λn(θ)Δt

]2

· ∂
∂θi

λn(θ )Δt · ∂
∂θ j

λn(θ)Δt

}

+
∂ 2

∂θi∂θ j
λn(θ )Δt

)

=
N−1

∑
n=0

1
λn(θ )

· ∂
∂θi

λn(θ ) · ∂
∂θ j

λn(θ ) ·Δt. (4.21)

By letting Δt→ 0, the summation in (4.21) can be replaced by an integral

Ii j =
∫ t f

t0

∂
∂θi

λ (t;θ ) · ∂
∂θ j

λ (t;θ )

λ (t;θ )
dt, i, j = 1,2. (4.22)

Using (4.8), the partial derivatives in (4.22) are

∂
∂θ1

λ (t;θ ) =
∂

∂φ0
λ (t;θ ) = λs ·h′

(
φ0 +(t− t0) fo

)
(4.23)

∂
∂θ2

λ (t;θ ) =
∂

∂ fo
λ (t;θ ) = λs · (t− t0) ·h′

(
φ0 +(t− t0) fo

)
. (4.24)
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Substituting (4.23) into (4.22), I11 may be found,

I11 =
∫ t f

t0

[
∂

∂φ0
λ (t;θ )

]2

λ (t;θ )
dt

=
∫ t0+Tobs

t0

[
λsh
′(φ0 +(t− t0) fo

)]2

λb + λsh
(
φ0 +(t− t0) fo

) dt

=
∫ Tobs

0

[
λsh
′(φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt. (4.25)

The observation time can decomposed as Tobs = Np ·P+Tp, where P is the pulsar
period, and 0≤ Tp < P. Hence, the integral in (4.25) can be split as follows

I11 =
Np

∑
n=1

(∫ nP

(n−1)P

[
λsh
′(φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt

)

+
∫ NpP+Tp

NpP

[
λsh
′(φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt. (4.26)

If the observation time is long enough, i.e., Tobs � 0 then Tobs ≈ Np ·P and the
last integral in (4.26) almost equals to zero. Also, because h(·) is periodic, all of the
remained integrals in (4.26) are equal. Therefore,

I11 ≈

Np

∑
n=1

∫ nP

(n−1)P

[
λsh
′(φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt

= Np

∫ P

0

[
λsh
′(φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt. (4.27)

By changing the integration variable, and noting that fo = 1/P and Tobs ≈ NpP

I11 =
Np

f

∫ φ0+ f P

φ0

[
λsh
′(φ)

]2

λb +λsh(φ)
dφ

≈ Tobs

∫ φ0+1

φ0

[
λsh
′(φ)

]2

λb +λsh(φ)
dφ

= Tobs

∫ 1

0

[
λsh
′(φ)

]2

λb +λsh(φ)
dφ . (4.28)
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To find I22, (4.24) is substituted into (4.7), the integration variable is changed,
and the integral is split into summation of the integrals in each period

I22 =
∫ t0+Tobs

t0

[
∂

∂ f
λ (t;θ)

]2

λ (t;θ )
dt

=
∫ t0+Tobs

t0

[
λs(t− t0)h′

(
φ0 +(t− t0) fo

)]2

λb + λsh
(
φ0 +(t− t0) fo

) dt (4.29)

=
∫ Tobs

0

[
λs · t ·h′

(
φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt

=
Np

∑
n=1

(∫ nP

(n−1)P

[
λs · t ·h′

(
φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt

)

+
∫ NpP+Tp

NpP

[
λs · t ·h′

(
φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt. (4.30)

As the observation time is long enough, the last integral in (4.30) is negligible.
Also, notice that if (n−1)P≤ t ≤ nP, then t in (4.30) can be replaced by

t = (n−1 + φ)P, (4.31)

where 0≤ φ ≤ 1. Hence,

I22 ≈

Np

∑
n=1

∫ nP

(n−1)P

[
λs · t ·h′

(
φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt

=
Np

∑
n=1

∫ 1

0

[
λs · (n−1 + φ)P ·h′(φ0 +(n−1 + φ) foP

)]2

λb +λsh
(
φ0 +(n−1 + φ) foP

) Pdφ

= P3
Np

∑
n=1

∫ 1

0

(n−1 + φ)2 · [λsh
′(φ0 + n−1 + φ

)]2

λb +λsh
(
φ0 + n−1 + φ

) dφ

= P3
Np

∑
n=1

∫ 1

0

(n−1 + φ)2 · [λsh
′(φ0 +φ

)]2

λb +λsh
(
φ0 + φ

) dφ . (4.32)

By changing the integration variable in (4.32),

I22 = P3
Np

∑
n=1

∫ φ0+1

φ0

(n−1 + φ−φ0)2 · [λsh
′(φ)

]2

λb + λsh(φ)
dφ . (4.33)
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Because Np� 1, the integral value of the term that contains (n−1)2 is dominant.
Therefore, I22 can be approximated by

I22 ≈ P3
Np

∑
n=1

∫ φ0+1

φ0

(n−1)2 · [λsh
′(φ)

]2

λb +λsh(φ)
dφ (4.34)

which equals

I22 = P3 (Np−1)(Np)(2Np−1)
6

∫ φ0+1

φ0

[
λsh
′(φ)

]2

λb +λsh(φ)
dφ (4.35)

and can be approximated by

I22 ≈ P3 N3
p

3

∫ φ0+1

φ0

[
λsh
′(φ)

]2

λb + λsh(φ)
dφ

≈

T 3
obs

3

∫ 1

0

[
λsh
′(φ)

]2

λb + λsh(φ)
dφ . (4.36)

Substituting (4.23) and (4.24) into (4.7), changing the integration variable and
splitting the integral, give rise to

I12 = I21 =
∫ t0+Tobs

t0

∂
∂φ0

λ (t;θ ) · ∂
∂ fo

λ (t;θ)

λ (t,θ )
dt

=
∫ t0+Tobs

t0

[λsh
′(φ0 +(t− t0) fo

)
][λs(t− t0)h′

(
φ0 +(t− t0) fo

)
]

λb +λsh
(
φ0 +(t− t0) fo

) dt

=
∫ Tobs

0

t · [λsh
′(φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt

=
Np

∑
n=1

(∫ nP

(n−1)P

t · [λsh
′(φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt

)

+
∫ NpP+Tp

NpP

t · [λsh
′(φ0 + fot

)]2

λb +λsh
(
φ0 + fot

) dt (4.37)
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As Np� 1, the last integral in (4.37) can be neglected compared to the first term.
Using the change of variable (4.31), (4.37) can be simplified as

I12 = I21 ≈

Np

∑
n=1

∫ nP

(n−1)P

t · [λsh
′(φ0 + fot

)]2

λb + λsh
(
φ0 + fot

) dt

=
Np

∑
n=1

∫ 1

0

(n−1 + φ)P · [λsh
′(φ0 +(n−1 + φ) foP

)]2

λb +λsh
(
φ0 +(n−1 + φ) foP

) Pdφ

= P2
Np

∑
n=1

∫ 1

0

(n−1 + φ)
[
λsh
′(φ0 + n−1 + φ

)]2

λb + λsh
(
φ0 + n−1 + φ

) dφ

= P2
Np

∑
n=1

∫ 1

0

(n−1 + φ)
[
λsh
′(φ0 + φ

)]2

λb + λsh
(
φ0 +φ

) dφ

= P2
Np

∑
n=1

∫ φ0+1

φ0

(n−1 + φ)[λsh′(φ)]2

λb +λsh(φ)
dφ . (4.38)

The term containing (n−1) has the largest contribution in the summation (4.38),
because Np� 1. Therefore, (4.38) can be approximated by

I12 = I21 ≈ P2
Np

∑
n=1

∫ φ0+1

φ0

(n−1)[λsh′(φ)]2

λb + λsh(φ)
dφ

= P2 (Np−1)Np

2

∫ φ0+1

φ0

[λsh′(φ)]2

λb +λsh(φ)
dφ . (4.39)

Since the term containing N2
p is dominant, (4.39) can be approximated by

I12 = I21 ≈ P2 N2
p

2

∫ φ0+1

φ0

[λsh′(φ)]2

λb + λsh(φ)
dφ (4.40)

and using the approximation Tobs ≈ NpP, it can be simplified to

I12 = I21 ≈

T 2
obs

2

∫ 1

0

[λsh′(φ)]2

λb + λsh(φ)
dφ . (4.41)

From (4.28), (4.36), and (4.41), the Fisher matrix and its inverse can be found.
These matrices are given in (4.10) and (4.12), respectively. �
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If the observed frequency, fo, is known then the only unknown parameter to be
estimated is φ0. In this case, from (4.28), the CRLB for estimation of φ0 is given by

CRLB(φ0) =
1

TobsIp
, (4.42)

where Ip is given in (4.11).
The pulse delay estimate, t̂d, can be determined from (4.3) as

t̂d =
φ̂1− φ̂2

f̂2
. (4.43)

Hence, if velocities of the spacecraft are known, f2 does not need to be esti-
mated, and from (4.42) and (5.1), the CRLB for estimation of td is given by the
following [44].

CRLB(td) =
2

f 2
2

(
1

TobsIp

)

(4.44)

4.4 Discussion

Pulse delay estimator (4.43) is just a function of the velocity of spacecraft farther to
the X-ray source. This may seem counter intuitive as one expects it to be a function
of velocities of the both spacecraft. However, this is not the case. The pulsar signal
is first detected on the closer vehicle. Then, assuming the clocks on both detectors
are synchronized, since the signal is emitted by the X-ray source, the time duration
it takes for the signal to be detected on the farther vehicle is just a function of its
own velocity.

Equation (4.44) shows that the CRLB value for estimation of the pulse delay is
inversely proportional to the observation time. In other words, to obtain more accu-
rate pulse delay estimates, longer observation time is needed. Furthermore, since the
CRLB is inversely proportional to Ip, which, in turn, is proportional to λs, making
measurements on brighter pulsars results in more accurate pulse delay estimates.
All of these analytical results are also consistent with intuition.

4.5 Numerical Examples

The CRLB for estimation of the relative distance is calculated for eight different
X-ray pulsars. It is given by σ = c

√
CRLB(td), where c is the speed of light. The

employed pulsars are presented in Table 4.1, and their profiles in two cycles are
shown in Fig. 4.2. The spacecraft velocities are assumed to be v1 = 3 km/s and
v2 = 9 km/s; and the initial phase observed at the first detector is φ1 = 0.2 cycle.
The relative distance between the spacecraft is assumed to be 180 km. Hence, the
pulse delay is td = 0.6 ms.
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Table 4.1 Accuracy of the
X-ray pulsar measurements Pulsar Period (s)

min
λb,λs

σ (m)

B0531+21 0.0335 2.6497E3
B0540−69 0.0504 4.4901E3
B0833−45 0.0893 1.8775E3
B1509−58 0.1502 2.8866E3
B1821−24 0.0031 188.68E0
B1937+21 0.0016 27.516E0
B1055−52 0.1971 1.1775E4
J0437−47 0.0057 461.08E0
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Fig. 4.2 Pulsars’ profiles, h(φ), over two cycles

The observation time is assumed to be Tobs = 100 s, and σ is calculated for
different values of λb and λs. The results are plotted in Fig. 4.3. As these figures
show, the rate of change of the σ surface drops for large values of λs. Note that
from (4.44), the σ value is inversely proportional to λs and the observation time,
Tobs. Hence, to obtain smaller values of σ for relative distance estimation, either the
observation time or λs must be increased. The minimum values of the σ surfaces
are also given in Table 4.1. The minimum values change in a range of a few tens of
meters to a few tens of kilometers.
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Fig. 4.3 The σ surface for Tobs = 100 s
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4.6 Summary

In this chapter, we formulate the pulse delay estimation problem. We show that the
pulse delay is composed of the true time delay between the detected pulsar rate
functions (which is due to the geometric range) and the differential time between
the detectors’ asynchronized clocks. We present the CRLB for estimation of the
spacecraft absolute velocities and the initial phase of the pulsar intensity functions.
We also present the CRLB for estimation of the pulse delay when the spacecraft
velocities are known. Some numerical examples are given as well.





Chapter 5
Pulse Delay Estimation Using Epoch Folding

5.1 Introduction

In this chapter we offer our first approach for estimation of the pulse delay. The
proposed approach is to retrieve the photon intensity functions on each detector via
epoch folding to obtain the empirical rate functions, i.e., λ̆k(t). Then, the empirical
intensities will be used for estimation of the initial phase on each detector. Finally,
from (4.3), the pulse delay can be estimated using the estimates of φ1 and φ2,

t̂d =
φ̂1− φ̂2

f2
. (5.1)

Based on epoch folding, two different pulse delay estimators are presented in
this chapter. Section 5.2 suggests using the correlation function between the em-
pirical rate function and the true one to estimate the initial phase of the intensity
function. In Sect. 5.3, a least-squares approach is proposed for estimation of the ini-
tial phase. Some clarifying remarks are given in Sect. 5.4. The effect of absolute
velocity errors on the performance of the proposed pulse delay estimators is studied
in Sect. 5.5. We study the numerical implementation of the estimators in Sect. 5.6.
Finally, we provide several numerical examples to assess the performance of the
proposed estimators in Sect. 5.7.

5.2 Cross Correlation Technique

Let Tb be the bin size, and λ̆ j(ti) be the empirical rate function on jth detector, where
0≤ ti ≤ P. The known rate function is

λ (ti) = λb + λsh
(
(ti− t0) fo

)
. (5.2)

Let the delayed rate function be

λ (ti;φ j) = λb +λsh
(
φ j +(ti− t0) fo

)
. (5.3)

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
DOI 10.1007/978-1-4419-8017-5 5, c© Springer Science+Business Media, LLC 2011
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Therefore,
λ̆ j(ti) = λ (ti;φ j)+ n̆ j(ti), j = 1,2, (5.4)

where
E[n̆ j(ti)] = 0 (5.5)

and

var[n̆ j(ti)] � σ 2
j (ti)

=
Nb

Tobs
λ j(ti;φ j). (5.6)

The initial phase φ j can be estimated by identification of the maximum of the
cross correlation (CC) function between λ (t) and λ̆ j(t)

φ̂ j =−argmax
ψ∈(0,1)

R j(ψ), j = 1,2, (5.7)

where

R j(ψ) =
∫ ∞

−∞
λ ∗(t)λ̆ j(t;ψ)dt (5.8)

is the CC function [44].
The asymptotic performance of this estimator is presented by the following

theorem [44].

Theorem 5.1. The pulse delay estimator obtained from (5.7) and (5.1), is unbiased
for Tobs� 0, and its asymptotic variance is given by,

var[t̂d] =
2
∫ 1

0

(
λb +λsh(φ)

)
[λsh

′(φ)]2dφ

f 2
2 Tobs

(∫ 1

0
[λsh

′(φ)]2dφ
)2 , (5.9)

where h′(φ) = ∂h/∂φ . This means that the estimator is consistent since its variance
converges to zero as more TOA measurements are incorporated. Furthermore, it
is not asymptotically efficient, meaning that its variance does not converge to the
CLRB in finite time, i.e.,

var[t̂d] > CRLB(td) for Tobs < ∞. (5.10)

Proof. First, the performance of the cross correlation initial phase estimator on each
detector is analyzed. For simplicity in notations, the subindex j of φ j in (5.4) is
dropped. Let

x1(t) = λ (t)

= λb + λsh
(
(t− t0) fo

)
(5.11)
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and
x2(t) = λ̆(t;φ). (5.12)

Assuming φ =− foD, x2(t) can be rewritten as

x2(t) = λb +λsh
(
(t− t0) fo + φ

)
+ n̆(t)

= λb +λsh
(
(t− t0−D) fo

)
+ n̆(t)

= x1(t−D)+ n̆(t). (5.13)

Let D̂ be the estimate of D. As the signals x1(t) and x2(t) are band-limited, the
cross correlation (5.8) has a derivative at D̂, and it follows from (5.7) that

Ṙ(D̂) = 0. (5.14)

By linearizing Ṙ(D̂) about the true time delay D, the following is obtained [53].

Ṙ(D)+ (D̂−D)R̈(D) = 0 (5.15)

Defining the delay estimation error

δ = D̂−D (5.16)

from (5.16) and (5.15), it can be expressed as

δ =− Ṙ(D)
R̈(D)

. (5.17)

The signals x1(t) and x2(t) have the following spectra

S1( f ) = Sλ ( f ) (5.18)

and,

S2( f ) =

⎧
⎨

⎩

Sλ ( f )e− j2π f D + Tb ∑
k

n̆(k)e− j2π f kTb | f |< fs/2

0 | f | ≥ fs/2,
(5.19)

where k � tk, fs = 1/Tb, and Sλ ( f ) is the spectrum of λ (t), which equals

Sλ ( f ) = Tb ∑
k

λ (k)e− j2π f kTb . (5.20)

The cross-correlation function is the inverse fourier transform of the cross power
spectrum

R(τ) =
∫ ∞

−∞
S∗1( f )S2( f )e j2π f τ d f . (5.21)
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Therefore,

Ṙ(τ) = j2π
∫ ∞

−∞
f S∗1( f )S2( f )e j2π f τ d f

= j2π
∫ fs/2

− fs/2
f S∗λ ( f )

(

Sλ ( f )e− j2π f D + Tb ∑
k

n̆(k)e− j2π f kTb

)

e j2π f τd f .

(5.22)

Assuming n̆(k) is small (or equivalently Tobs� 0), (5.22) can be linearized about
the true values of the samples as follows [53].

Ṙ(τ)≈∑
k

n̆(k)
∂ Ṙ(τ)
∂ n̆(k)

, (5.23)

where

∂ Ṙ(τ)
∂ n̆(k)

= j2πTb

∫ fs/2

− fs/2
f S∗λ ( f )e− j2π f kTb e j2π f τd f . (5.24)

Therefore,

Ṙ(τ)≈ j2πTb ∑
k

n̆(k)
(∫ ∞

−∞
f Sλ ( f )e j2π f (kTb− τ)d f

)∗
. (5.25)

Hence,

Ṙ(D)≈ j2πTb ∑
k

{

n̆(k)
(∫ ∞

−∞
f Sλ ( f )e j2π f (kTb−D)d f

)∗}

= Tb ∑
k

n̆(k)λ̇ (k). (5.26)

From (5.21),

R̈(τ) =−4π2
∫ ∞

−∞
f 2S∗1( f )S2( f )e j2π f τ d f

≈−4π2
∫ ∞

−∞
f 2|Sλ ( f )|2e j2π f (τ−D)d f . (5.27)

Then,

R̈(D)≈−4π2
∫ ∞

−∞
f 2|Sλ ( f )|2d f

= Tb ∑
k

λ̇ 2(k). (5.28)
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Substituting (5.26) and (5.28) into (5.17), the estimation error is given by

δ ≈
∑
k

n̆(k)λ̇ (k)

∑
k

λ̇ 2(k)
. (5.29)

Therefore, from (5.29)

E[δ ] = 0. (5.30)

Since φ =− foD, this means that the phase estimator is unbiased as well,

E[φ̂ ] = φ . (5.31)

Furthermore,

var[δ ] =
∑
k

var[n̆(k)] · λ̇ 2(k)

(

∑
k

λ̇ 2(k)

)2 , (5.32)

where var[n̆(k)] is given in (3.42). Therefore,

var[δ ] =
1

TbNp
·
∑
k

λ (k)λ̇ 2(k)

(

∑
k

λ̇ 2(k)

)2 . (5.33)

Let Tb→ 0 (or equivalently Nb→ ∞), then (5.33) becomes

var[δ ]≈ 1
TbNp

·
1
Tb

∫ P

0
λ (t)λ̇ 2(t)dt

(
1
Tb

∫ P

0
λ̇ 2(t)dt

)2

=
1

Np
·

∫ P

0
λ (t)λ̇ 2(t)dt

(∫ P

0
λ̇ 2(t)dt

)2 . (5.34)

The phase value varies in the range 0 ≤ φ ≤ 1, and the time span is 0 ≤ t ≤ P.
As a result, they are related as φ = t/P. Therefore,

dt = Pdφ (5.35)
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and

∂
∂ t

λ (t) =
∂

P∂φ
λ (φ). (5.36)

Thus, (5.34) can be simplified as,

var[δ ] =
1

Np
·

1
P

∫ 1

0
λ (φ)λ̇ 2(φ)dφ

(
1
P

∫ 1

0
λ̇ 2(φ)dφ

)2

=
P

Np
·

∫ 1

0
λ (φ)λ̇ 2(φ)dφ

(∫ 1

0
λ̇ 2(φ)dφ

)2

=
f 2
o

Tobs
·

∫ 1

0
λ (φ)λ̇ 2(φ)dφ

(∫ 1

0
λ̇ 2(φ)dφ

)2 . (5.37)

Since φ̂ =− foD̂,

var[φ̂ j] =
1

Tobs
·

∫ 1

0
λ (φ)λ̇ 2(φ)dφ

(∫ 1

0
λ̇ 2(φ)dφ

)2 . (5.38)

Therefore, substituting λ (φ) = λb + λsh(φ) in (5.38), and using (5.1), the vari-
ance of the time delay estimator is determined as given in (5.9).

To compare the performance against the CRLB it is shown that var[t̂d]/CRLB(td)
is greater than one. Using (5.9) and (4.44), the ratio equals

var[t̂d]
CRLB(td)

=

∫ 1

0
g1(φ)dφ ·

∫ 1

0
g3(φ)dφ

(∫ 1

0
g2(φ)dφ

)2 , (5.39)

where

g1(φ) �
(
λb +λsh(φ)

)
[λsh

′(φ)]2 (5.40)

g2(φ) � [λsh
′(φ)]2 (5.41)

g3(φ) �
[
λsh
′(φ)

]2

λb + λsh(φ)
. (5.42)
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Note that from Cauchy–Schwartz inequality,

∫ 1

0
g1(φ)dφ ·

∫ 1

0
g3(φ)dφ ≥

(∫ 1

0

√
g1(φ)g3(φ)dφ

)2

. (5.43)

From (5.40), (5.41), and (5.42), it can easily be seen that

g2(φ) =
√

g1(φ)g3(φ). (5.44)

Therefore, (5.43) and (5.39) result in

var[t̂d]≥ CRLB(td). (5.45)

The equality holds if and only if g3(φ) is a multiple of g1(φ), which implies

λb +λsh(φ)≡ const. (5.46)

Since this is not the case for a general h(φ), equality does not hold, and the
variance does not attain the CRLB asymptotically. �

5.3 Nonlinear Least Squares Technique

The initial phase can be estimated by fitting the empirical rate function, λ̆ j(t), to
the true known rate function, λ (t), via solving a nonlinear least squares (NLS) op-
timization problem [43]. The NLS cost function is defined based on minimizing the
difference between the empirical rate function and the true one at the jth detector,
i.e., λ̆ j(t)−λ (t;φ j). Hence, the objective function, J(φ j), is defined as follows.

J(φ j) =
Nb

∑
i=1

(
λ̆ j(ti)−λ (ti;φ j)

)2
, j = 1,2 (5.47)

The unknown initial phase is estimated by minimizing the cost function (5.47), as

φ̂ j = argmin
φ j∈(0,1)

J(φ j), j = 1,2. (5.48)

The following theorem summarizes the performance of the proposed pulse delay
estimator [44].

Theorem 5.2. The pulse delay estimator obtained from (5.48) and (5.1) is asymp-
totically unbiased, and its asymptotic variance is given by (5.9). That is, the NLS
estimator’s asymptotic performance is the same as the CC estimator.
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Proof. For simplicity in notations, the subindex j in (5.47) is dropped and the cost
function is restated as,

J(φ) =
(
x̆− f(φ)

)T(x̆− f(φ)
)
, (5.49)

where
x̆ �

(
λ̆ (t1) λ̆ (t2) · · · λ̆(tNb)

)T
(5.50)

and

f(φ) �
(
λ (t1;φ) λ (t2;φ) · · · λ (tNb ;φ)

)T
. (5.51)

Now, assuming that the selected minimum is in the correct neighborhood (or
equivalently the observation time is long enough), the mean and variance of the
estimator φ̂ can be approximated by linearizing f(φ) about the true value of phase,
φo, as

f(φ) ≈ f(φo)+ (φ −φo)h, (5.52)

where

h � ∂ f(φ)
∂φ

∣
∣
∣
φ=φo

. (5.53)

Therefore, (5.49) becomes

J(φ) =
(
x̆− f(φo)+ hφ o−hφ

)T(x̆− f(φ o)+ hφo−hφ
)
. (5.54)

Noting that x̆− f(φo)+hφo is fixed and φ is the variable, the linear least-squares
solution to the cost function (5.54) is given by

φ̂ = k−1hT(x̆− f(φ o)+ hφo)

= φ o + r−1hT(x̆− f(φ o)
)
, (5.55)

where
r � hTh. (5.56)

The estimation error is defined as

eφ = φ̂ −φ o. (5.57)

Hence, from (5.55)

E[eφ ] = r−1hT(φ o)E [x̆− f(φo)] (5.58)

and

var[eφ ] = r−1hTvar [x̆− f(φ o)]hr−1. (5.59)

Note that from (3.40)

x̆− f(φo) = n̆, (5.60)

where

n̆ �
(
n̆(t1) n̆(t2) · · · n̆(tNb)

)T
. (5.61)
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Hence, employing (3.41) and (3.42), the asymptotic mean and variance of the
estimation error, as Tobs→ ∞, are

E[eφ ] = 0 (5.62)

and

var[eφ ] =
Nb

Tobs
r−1hTLhr−1, (5.63)

where
L � diag

(
λ (t1;φ o),λ (t2;φo), . . . ,λ (tNb ;φo)

)
. (5.64)

This means that the NLS estimator φ̂0 is asymptotically unbiased. By substitut-
ing the values of r, h, and L into (5.63), the asymptotic variance of initial phase
estimator is given by

var[φ̂ j] =
Nb

Tobs
·

Nb

∑
i=1

λ (ti;φ o)
(
λ ′(ti;φo)

)2

(
Nb

∑
i=1

(
λ ′(ti;φo)

)2

)2 . (5.65)

By letting Nb→ ∞ and substituting the value of λ (·) from (3.27), (5.65) can be
replaced by

var[φ̂ j] =

∫ 1

0

(
λb +λsh(φ)

)
[λsh

′(φ)]2dφ

Tobs

(∫ 1

0
[λsh

′(φ)]2dφ
)2 . (5.66)

Therefore, from (5.1), the time delay estimator’s asymptotic variance equals
2var[φ̂ j]/ f 2

2 , which is given in (5.9). �

5.4 Discussion

In [54], it is stated that if some regularity conditions are satisfied, the NLS estimator
is consistent. It is easy to check that the mentioned conditions are met by the NLS es-
timator (5.48). Furthermore, it is mentioned that the NLS estimator is not in general
asymptotically efficient, and this property depends on the underlying distribution of
the noise. The significance of Theorem 5.2 is that it states (5.48) is indeed not an
asymptotically efficient estimator. A meaningful measure to compare the estimator’s
performance to the CRLB is the asymptotic relative efficiency (ARE), which is the
ratio between the estimator’s asymptotic variance and the CRLB [55]. The ARE for
the proposed NLS estimator is calculated and given in (5.39). From (5.39), it is clear
that the LNS estimator’s ARE is only a function of the pulsar profile, h(φ), and the
photon constant rates, λb and λs.
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Also note that the proposed NLS phase estimation approach is different from the
one given in [56], which is typically used for radio pulsar timing. The method in
[56] is based on minimizing the difference between the Fourier transforms of the
empirical rate function and the true one.

5.5 Absolute Velocity Errors

The presented pulse delay estimators were analyzed based on accurate knowledge of
the spacecraft absolute velocities. If there are absolute velocity errors, the proposed
pulse delay estimation approach still works under certain conditions. If the velocity
errors in the direction of the X-ray source are small enough, the resulted pulse delay
errors can be neglected. This is a result of the upper bound presented in (3.72).
If the velocity errors on each spacecraft are almost equal, Δv1 ≈ Δv2, then from
(3.66), Δφ1 ≈ Δφ2. This results in the same deterioration of initial phase estimates
on each detector. Hence, from (5.1), as the difference between the phase estimates
is employed for estimation of the pulse delay, it remains asymptotically unbiased.
However, the variance of estimation error becomes larger than the case where the
absolute velocities are perfectly known due to two reasons [44]. One is the effect of
the velocity error on f2 in the denominator of (5.1). It is given by

Δt̂d =−Δφ̂
f 2
2

Δ f2, (5.67)

where

Δφ̂ = φ̂1− φ̂2 (5.68)

and

Δ f2 = fs
Δv2

c
. (5.69)

Therefore, the time delay estimate error due to this velocity error equals

Δt̂d =−Δφ̂
Δv2

c f 2
2

fs

≈−Δφ̂
Δv2

c f2
. (5.70)

This causes cΔt̂d meters of error in position estimation

δΔx = cΔt̂d

≈−Δφ̂
Δv2

f2
. (5.71)
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The second reason that the variance of the pulse delay estimator increases is that
the variance of the initial phase estimates becomes larger. These estimation errors
can be modeled by increasing the variance of the measurement noise in the Kalman
filtering stage.

If the aforementioned assumptions about spacecraft velocities are not valid, the
absolute velocities must be estimated as well as the initial phase values. We propose
two solutions for this problem.

One approach is to simultaneously estimate fk and φk. This is possible by
using the TOA pdfs (6.1) to form two likelihood functions, and then solve the
two-dimensional ML estimation problems. More details about this approach are dis-
cussed in Chap. 6.

In a different approach, we propose to employ the geometry of pulsars in the
sky to estimate the spacecraft absolute velocities. For more details on this method,
please see Chap. 7.

5.6 Computational Complexity Analysis

5.6.1 Epoch Folding

To use the CC or NLS initial phase estimators, the empirical rate function must be
obtained through epoch folding. To obtain it, from (3.39), Nb(Np−1) additions, and
2Nb divisions are needed. Hence, the total number of calculations for epoch folding
is Nb(Np +1) flops. This shows that the amount of necessary calculations for epoch
folding is a linear function of Np. In other words, it roughly linearly grows as the
observation time becomes longer.

5.6.2 CC Estimator

As λ̆ (t;ψ) is a discrete signal which is available at multiples of Tb s, the discrete
cross-correlation function must be calculated. It is given by

RD(ψ) =
1

Nb

Nb

∑
k=1

x1(kTb)x2(kTb;ψ), (5.72)

where x1(t) and x2(t) are defined in (5.11) and (5.12), respectively [57].
The cross-correlation function can be computed in the time domain using (5.72),

or in the Fourier domain

RD(ψ) = F−1{X1( fk)X∗2 ( fk)}, (5.73)

where X1( fk) and X2( fk) are the discrete Fourier transforms of x1(kTb) and x2(kTb).
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If the resolution of the initial phase estimate is needed to be finer than 1/Nb,
it is necessary to interpolate the cross-correlation function. One approach is to ap-
proximate the correlation function by a convex parabola in the neighborhood of its
maximum, as

RD(ψ) = aψ2 + bψ + c, (5.74)

where a, b, and c are parameters fitting the measured correlation. Using this approx-
imation, the continuous time-delay estimation can be performed by finding the apex
of the parabola,

D̂s =− b
2a

. (5.75)

Hence, to obtain the continuous initial phase estimate, two steps are needed:

• Locate the index km of the maximizer delay RD(kmTs), where Ts = 1/Nb, to find
the coarse estimate.

• To find the subsample estimate, use the maximum cross-correlation delay
RD(kmTs), and two of its adjacent values RD(kmTs − Ts) and RD(kmTs + Ts)
for a parabolic approximation, and add it to the coarse estimate,

φ̂ = kmTs− 1
2
· RD(kmTs + Ts)−RD(kmTs−Ts)

RD(kmTs + Ts)−2RD(kmTs)+ RD(kmTs−Ts)
. (5.76)

Note that due to the parabolic approximation, the phase estimate (5.76) becomes
biased [57].

Using (5.72), to obtain the discrete cross-correlation function, for a fixed ψ ,
Nb multiplications, Nb − 1 additions, and 1 division are performed. Since the
search domain to maximize RD(ψ) is (0,1) cycle, which is divided into Ng grids,
a total number of 2NgNb flops must be performed to obtain the initial phase
estimate.

From (5.76), we can see that three additions and two multiplications are needed
for interpolation. It is also clear that the interpolation is performed only to find the
maximizer point. Hence, the number of calculation flops is not a function of the
observation time, Tobs.

In summary, to obtain the CC estimator, first epoch folding is performed which
needs Nb(Np + 1) operation flops. Then the search interval (0,1) cycle is divided
into Ng grids, and the correlation function is obtained for each grid. This imposes
2NbNg operations.

If the correlation function is obtained using the Fourier transform from (5.73),
first the Fourier transform of each signal must be found. Then Nb multiplications are
performed and using inverse Fourier transform on the resulted signal, the correlation
function is determined. As fast Fourier transform techniques are widely available,
this approach is expected to be faster than the time domain method.
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5.6.3 NLS Estimator

To construct the NLS cost function, using (5.47), Nb subtractions, Nb multiplica-
tions, and Nb additions must be performed for a fixed φ0. Hence, the total number of
floating-point operations is 3Nb. This means that the computational cost to construct
the NLS cost function is not a function of the observation time.

Although for any given φ0, λ (ti,φ0) is known, the mathematical equation of the
rate function λ (t;φ0) is not usually available in practice. Hence, the gradient of the
cost function, if needed, must be calculated numerically. Furthermore, the cost func-
tion is not convex in general. This means that it usually has multiple minima. Hence,
to avoid getting trapped in local extrema, and since (5.48) is a scalar optimization
problem, employing a one-dimensional grid search over the interval (0,1) cycle is
necessary to solve it. In other words, first, the epoch folding procedure, with a cost
of Nb(Np +1) flops, is performed. Then, the search interval (0,1) is divided into Ng

grids. For each grid, the cost function (5.47) is calculated, and the minimizer grid is
found. This imposes a total floating-point operations of 3NgNb flops.

5.7 Numerical Examples

First, performance of the initial phase estimators on one detector is examined.
Then, a relative navigation scenario is presented and the pulse delay estimators are
simulated.

5.7.1 Initial Phase Estimators

The Crab pulsar (PSR B0531+21) is chosen as the X-ray source. The constant ar-
rival rates are chosen to be λb =5 and λs =15 ph/s. The spacecraft velocity on the
direction vector pointing to the pulsar is assumed to be v=3 km/s; and the initial
phase observed at the detector is φ1 =0.2 cycle. A Monte Carlo simulation was per-
formed in which 500 independent realization of photon TOAs were processed by
the phase estimators.

To evaluate each estimator’s performance, the empirical rate function is derived
for each observation time, and the initial phase is estimated by optimizing the cost
functions given in (5.8) and (5.47). The optimization is done using a grid search
algorithm over [0,1) cycle. The interval is divided into 1,024 grids and the cost
functions are calculated for each one. Note that the magnitude of the estimation
error is calculated modulo one cycle, i.e.,

|e|= min{mod (φ0− φ̂0,1), mod (φ̂0−φ0,1)}. (5.77)

For instance, if φ0 = 0.1 and φ̂0 = 0.9, the error is 0.2 cycle, and not 0.8 cycle.
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Fig. 5.1 RMS error for the CC and NLS phase estimators

In Fig. 5.1, the root mean square (RMS) of the CC and NLS estimation errors for
each observation time are plotted against the square root of the CRLB(φ0) and the
analytical value, presented in (4.42) and (5.66), respectively. The mean square error
(MSE) of the estimator which measures the average mean squared deviation of the
estimator from the true value, is defined as follows.

MSE(φ̂0) = E[(φ̂0−φ0)2] (5.78)

The MSE can be rewritten as

MSE(φ̂0) = E

{[(

φ̂0−E(φ̂0)
)

+
(

E(φ̂0)−φ0

)]2
}

= var(φ̂0)+
[
E(φ̂0)− φ0

]2

= var(φ̂0)+ b2(φ0), (5.79)

where

b(φ0) = E(φ̂0)−φ0 (5.80)

is the bias of the estimator. This shows that the MSE is composed of errors due to
the variance of the estimator as well as the bias.

The RMS plots in Fig. 5.1 show that as time goes on, the variance of estimation
error approaches zero, implying that both estimators are consistent. The difference
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between the RMS error and the CRLB is determined by the difference between
(5.66) and (4.42). It is in general a function of the pulsar rate function, but it is
always inversely proportional to the observation time. As the observation time is
reduced, there is a threshold point at which the RMS error starts to deviate from the
CRLB value. The reason is that as the observation time goes below this threshold,
the realization of TOAs does not represent the rate function precisely. Therefore,
they result in a distorted cost function whose extremum happens at a farther point
to the true parameter, φo. As a result, the estimator becomes biased, and as (5.79)
shows, the estimation error’s variance starts to depart from the CRLB.

The CC cost function (5.8), obtained by Monte Carlo simulation over 500 re-
alizations of TOAs, is plotted in Fig. 5.2 for different observation times. The plots
show that for short observation times, the CC function has a smaller peak, and as the
observation time increases and more TOAs are measured, the peak value becomes
larger.

The cost function (5.47) is also plotted in Fig. 5.3 for different observation times.
The plots show that as the observation time increases, the cost function becomes
smaller.

Figures 5.2 and 5.3 also show that each of the cost functions has multiple
extrema. Hence, they verify that, to avoid getting trapped in local extrema, adopting
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Fig. 5.2 The CC cost function
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Fig. 5.3 The NLS cost function

a grid search optimization approach is necessary. As the search is performed over
the whole interval (0,1) cycle, the algorithm initialization issues do not arise.

5.7.2 Pulse Delay Estimators

Now we simulate the pulse delay estimators. The spacecraft velocities on the direc-
tion vector pointing to the pulsar are assumed to be v1 = 3 km/s and v2 = 9 km/s;
and the initial phase observed at the first detector is φ1 = 0.2 cycle. The Doppler
frequencies depend on v1 and v2, which are scalars. Hence, we do not need the
spacecraft velocity vectors for this simulation. The relative distance between the
spacecraft is assumed to be Δd = 180 km. Hence, the pulse delay to be estimated is
td = 0.6 ms. Since td is less than the pulsar period, there is no phase ambiguity.

An observation time of Tobs = 100 s is selected to verify the epoch folding re-
sults. For each observation time, photon time tags are folded back into one single
pulsar cycle which is divided into Nb = 1,024 bins, and the rate functions on each
detector are derived using (3.39). The empirical rate functions along with the true
ones are plotted in Figs. 5.4 and 5.5. As the plots show, the empirical rate functions
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66 5 Pulse Delay Estimation Using Epoch Folding

0 5 10 15 20 25 30 33
0

500

1000

1500

Time, t (msec)

va
r[
n̆
(t

)]
Empirical
Analytical

Fig. 5.6 The variance of n̆1(t) for Tobs = 100 s

converge to the true functions. In Figs. 5.6 and 5.7, the variance of n̆(t), obtained via
simulation, is plotted and compared to the analytical variance for each detector.

The effect of imprecise absolute velocity data on epoch folding is studied as well.
The errors are intentionally chosen to be big: Δv1 = 1,000 m/s and Δv2 = 1,250 m/s.
For the selected parameters, the upper bound (3.72) roughly equals 10 m/s. Since the
velocity errors are bigger than the bound, the empirical rate functions are expected to
be deteriorated. Figures 5.8 and 5.9 verify this fact. Comparing them to the true rate
functions shows that they are shifted, and their peaks are flattened. The same phe-
nomenon happens for the noise variance which can be seen in Figs. 5.10 and 5.11.

Figures 5.12 and 5.13 show the RMS error of the proposed pulse delay esti-
mators, obtained through simulation, against the CRLB and the analytical value,
calculated as in (4.44) and (5.9). The mean square error (MSE) of the estimator is
defined as

MSE(t̂d) = E[(t̂d− td)2] (5.81)

and the cost functions are optimized using a grid search approach in the domain of
(0,1) cycle.

As expected, the RMS plots show that as time goes on, the variance of each pulse
delay estimator approaches zero. Also, as the observation time is reduced, there is
a threshold point at which the estimation error variance starts to deviate from the
CRLB. It is due to the fact that the phase estimators become biased when there are
not enough photon TOAs to process.
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Fig. 5.7 The variance of n̆2(t) for Tobs = 100 s
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Fig. 5.9 λ̆2(t) when Δv2 = 1,250 m/s
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Fig. 5.11 var[n̆(t)] when Δv2 = 1,250 m/s
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Fig. 5.13 The RMS error of the CC-based estimator

Note that we performed this simulation to verify that the analytical RMS values
match the numerical results. Different choices of λb, λs, v1, v2, φ1, and Δd, only
change numerical values of CRLB, analytical RMS errors, and simulation RMS
errors.

Finally, the performance of the pulse delay estimators is studies when the space-
craft velocity errors are Δv1 = 1,000 m/s and Δv2 = 1,250 m/s. The RMS error plots
are presented in Figs. 5.14 and 5.15. As the plots show, the asymptotic performance
of the estimators degrades compared to the case where the absolute velocities are
perfectly known.

5.8 Summary

We explain how to use the epoch folding procedure for estimation of the pulse delay.
We presented two different initial phase estimators which both work based on epoch
folding. The key idea in employing epoch folding for X-ray pulsar-based navigation
is to recover the photon intensity functions on each detector and estimate their initial
phase. One estimator works based on maximizing the cross correlation between the
empirical rate function and the true one. The other one is obtained by minimizing the
difference between the rate functions via solving a least-squares problem. We ana-
lyze theses estimators and show that they are not asymptotically efficient but they
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Fig. 5.14 The RMS error of the NLS-based estimator in presence of absolute velocity errors
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are consistent. We investigate the numerical implementation aspects by analyzing
the number of floating point operations. Further numerical examples on computa-
tional complexity of the estimators will be presented in Chap. 6. We explain that
the proposed pulse delay estimation technique works not only when the spacecraft
velocities are perfectly known but also under some conditions where the velocity
data is not perfect. By offering different simulation scenarios, we also examine the
analytical results via numerical examples.



Chapter 6
Pulse Delay Estimation via Direct Use of TOAs

6.1 Introduction

An important point regarding the pulse delay estimation techniques introduced in
Chap. 5 is that they need to employ the epoch folding procedure which needs the
exact knowledge of the spacecraft velocities. Furthermore, it was shown that the pro-
posed epoch folding-based estimators are not asymptotically efficient. To address
these problems, we propose another method in this chapter. This approach is based

on direct use of the measured TOA sets, {t(1)
i }M1

i=1 and {t(2)
i }M2

i=1. Because the mea-
sured TOAs are being used directly, it is not necessary for the estimators to have
access to the velocity data. Nonetheless, the effect of imprecise velocity data on
the performance of the pulse delay estimator is studied. Computational complexity
study is also performed.

We formulate an ML problem in Sect. 6.2 for estimation of the Doppler frequen-
cies and the initial phase values. Some remarks on numerical implementation of
the proposed estimator are offered in Sect. 6.3. The ML computational complexity
analysis is presented in Sect. 6.4. All computational complexity analysis results are
summarized in Sect. 6.5. The effect of absolute velocity errors on the pulse delay
estimator’s performance is studied in Sect. 6.6. Numerical simulations are provided
in Sect. 6.7.

6.2 Maximum-Likelihood Estimator

Employing the pdfs associated with the detected time tags, an ML estimation prob-
lem can be formulated to estimate φk and fk. According to (3.10), the pdfs associated
with each set of time tags are given by,

p
(
{t(k)i }Mk

i=1;φk, fk

)
= e−Λ(φk, fk)

Mk

∏
i=1

λk(t
(k)
i ;φk, fk), (6.1)

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
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where

Λ(φk, fk) �
∫ t f

t0
λk(t;φk, fk)dt, k = 1,2. (6.2)

Recognizing the pdfs given in (6.1) as likelihood functions, the maximum-
likelihood estimators (MLEs) are provided by maximizing each likelihood function
with respect to the unknown parameters. Equivalently, the natural logarithm of the
likelihood function or the log-likelihood function (LLF) can be maximized.

LLF(φk, fk) =
Mk

∑
i=1

ln
(
λk(ti;φk, fk)

)−Λ(φk, fk), k = 1,2. (6.3)

If the observation time is long enough compared with the pulsar period then
Λ(φk, fk) in (6.3) shows a minimal dependence on the parameters φk and fk, that is,
∂Λ/∂φk = 0, and ∂Λ/∂ fk = 0. The reason is as follows. Let the observation time
contains Np pulsar cycles, Tobs = NpP+ Tp, where 0≤ Tp < 1. Using periodicity of
λ (t;φk, fk), (6.2) can be res-stated as follows.

Λ(φk, fk) =
∫ t0+Tp

t0
λ (t;φk, fk)dt + Np

∫ P

0
λ (t;φk, fk)dt. (6.4)

Since λ (·)≥ 0 is a periodic function, its integral over one period is not a function
of the initial phase and the Doppler frequency. As a result, the second term on the
right hand side of (6.4) is independent of φk and fk, while the first term is a function
of φk and fk. Hence, if Np� 1, then the second term is strongly dominant, and the
value of Λ(φk, fk) will not be sensitive to φk and fk. In other words ∂Λ(φk)/∂φk ≈ 0
and ∂Λ( fk)/∂ fk ≈ 0. Therefore, it can be dropped from the objective function, and
the likelihood functions, denoted by Ψ(φk, fk), become,

Ψ(φk, fk) =
Mk

∑
i=1

ln
(
λk(ti;φk, fk)

)
. (6.5)

The unknown parameters φk and fk can be determined by solving the following
optimization problems,

(φ̂k, f̂k) = argmax
φk, fk

Ψ(φk, fk), k = 1,2 (6.6)

and the pulse delay may be estimated from (4.43).
The statistical properties of the MLEs (6.6) are summarized in the following

theorem [51].

Theorem 6.1. The MLE determined from (6.6) is unbiased for Tobs� 0, and attains
the CRLB, presented in (4.12). In other words, it is asymptotically efficient.

Proof. To investigate the properties of the MLE, first note the following theorem
[50].
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Theorem 6.2. If the pdf p(x;θ) of the data x satisfies the regularity conditions
given in (4.5) then the MLE of the parameter θ is asymptotically unbiased and
asymptotically attains the CRLB. It is therefore asymptotically efficient.

Let θ be the unknown parameter to be estimated. To apply Theorem 6.2, it must
be shown that the regularity condition (4.5) is satisfied, where x = {ti}M

i=1. From
(3.10),

ln p(x;θ ) =−Λ(θ )+
M

∑
i=1

lnλ (ti;θ ). (6.7)

Therefore,

∂
∂θ

ln p(x;θ ) =− ∂
∂θ

Λ(θ)+
M

∑
i=1

1
λ (ti;θ)

· ∂
∂θ

λ (ti;θ ). (6.8)

Because the observation time is assumed to be long enough, the first term in (6.8)
vanishes and,

E

[
∂

∂θ
ln p(x;θ)

]

=
M

∑
i=1

E

[
1

λ (ti;θ )
· ∂

∂θ
λ (ti;θ)

]

. (6.9)

To calculate the stochastic expectation appearing in the right-hand side of (6.9),
the following corollary may be used [41].

Corollary 6.3. Let {t j}N
j=1 be the photon TOAs with the pdf given in (3.10). Also, let

g
({t j}N

j=1

)
�

N

∏
j=1

r(t j), (6.10)

where r(t) is any general function. Then, the stochastic expectation of g
(
{t j}N

j=1

)

for a fixed N equals,

EN
[
g
({t j}N

j=1

)]
=

e−Λ

N!
Γ N , (6.11)

where Λ is defined in (3.11), and,

Γ �
∫ t f

t0
r(t)λ (t)dt. (6.12)

Proof (Proof of Corollary 6.3). Let ΩN be the event of receiving N photons at any
N different increasing time instants in an interval [t0,t f ]. Then, using the TOA pdf,
given in (3.10),

EN
[
g
({t j}N

j=1

)]
=

∫

ΩN

p
({ti}N

i=1,N
) N

∏
j=1

r(t j)dt1 · · ·dtN , (6.13)
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where ΩN is the event of receiving N photons at any N different increasing time in-
stants in interval [t0,t f ]. Note that the sequence {t1, t2, . . . ,tN} is in increasing order.
As there exists N! permutations of ti, for a fixed N, the probability that N number of
ti’s occurs in no special order is N! times that of the sequence occurring in increasing
order. Therefore,

∫

ΩN

p
({ti}N

i=1,N
) N

∏
j=1

r(t j)dt1 · · ·dtN

=
1

N!

∫ t f

t0

∫ t f

t0
· · ·

∫ t f

t0
p
({ti}N

i=1,N
) N

∏
j=1

r(t j)dt1 · · ·dtN

=
e−Λ

N!

∫ t f

t0

∫ t f

t0
· · ·

∫ t f

t0

N

∏
j=1

r(t j)λ (t j)dt1 · · ·dtN

=
e−Λ

N!

(∫ t f

t0
r(t)λ (t)dt

)N

� e−Λ

N!
Γ N . (6.14)

�

Now it can be seen that the stochastic expectation in the right-hand side of (6.9)
is a special case of (6.11) where N = 1. Hence,

E

[
1

λ (ti;θ )
· ∂

∂θ
λ (ti;θ)

]

= e−Λ Γ

= e−Λ
∫ t f

t0
r(t;θ )λ (t;θ )dt, (6.15)

where

r(t;θ) =
λ̇ (t;θ)
λ (t;θ)

(6.16)

which yields in,

E

[
1

λ (ti;θ)
· ∂

∂θ
λ (ti;θ )

]

= e−Λ(
λ (t f ;θ )−λ (t0;θ)

)
. (6.17)

As Λ increases as a function of observation time, the term e−Λ approaches zero,
while λ (t f ;θ)− λ (t0;θ) remains finitely bounded in magnitude. Therefore, the
right-hand side of (6.17) approaches zero. This means that the regularity condition
(4.5) holds, and as a result, according to Theorem 6.2, the MLE θ̂ is asymptotically
efficient. �
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Assuming the velocities of the vehicles are known, the Doppler frequencies do
not need to be estimated, and the phase estimates may be obtained by solving the
following optimization problem,

φ̂k = argmax
φk∈(0,1)

Ψ(φk), k = 1,2. (6.18)

Furthermore, the pulse delay estimator is determined from (5.1).
The statistical properties of the resulting pulse delay estimator are presented by

the following theorem [49].

Theorem 6.4. The pulse delay estimator determined from (6.18) and (5.1) is
asymptotically efficient, and its variance is given by (4.44).

Proof. From Theorem 6.1, the phase estimators are asymptotically efficient. Hence,
using (5.1), the pulse delay estimator is asymptotically efficient as well, and its
variance equals 2CRLB(φ0)/ f 2

2 where CRLB(φ0) is presented in (4.42). �

6.3 Numerical Determination of the MLE

To find the MLE of a parameter θ , the likelihood function needs to be maximized.
If the allowable values of θ lie in a certain interval then the maximum of likeli-
hood function in that interval needs to be found. The safest way to do this is to
perform a grid search over that interval. As long as the spacing between θ values
is small enough, it is guaranteed to reach to the maximum of likelihood function.
However, if the range of θ is not known or confined to a finite interval then a grid
search may not be computationally feasible. In such situations, iterative optimiza-
tion procedures are employed. A typical one is the Newton-Raphson method. In
general, these methods result in the MLE if the initial guess is close to the true
value. If not, they may not converge or only convergence to a local maximum is
attained. An important point about MLE is that the likelihood function changes for
each data set.

The iterative methods attempt to maximize the likelihood function by finding the
zero of its derivative,

∂
∂θ

ln p(x;θ) = 0. (6.19)

The Newton-Raphson iteration is [50],

θ (k+1) = θ (k)−
(

∂ 2

∂θ∂θ T ln p(x;θ )
)−1 ∂

∂θ
ln p(x;θ )

∣
∣
∣
∣
∣
θ=θ (k)

, (6.20)
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where
[

∂ 2

∂θ∂θ T ln p(x;θ)
]

i j
=

∂ 2

∂θi∂θ j
ln p(x;θ) (6.21)

is the Hessian of the likelihood function, and ∂ ln p(x;θ )/∂θ is the gradient vector.
In implementing (6.20), inversion of the Hessian matrix is not required because it
can be rewritten as,

∂ 2

∂θ∂θ T ln p(x;θ )
∣
∣
∣
θ=θ (k)

θ (k+1)

=
∂ 2

∂θ∂θ T ln p(x;θ)
∣
∣
∣
θ=θ (k)

θ (k)− ∂
∂θ

ln p(x;θ)
∣
∣
∣
θ=θ (k)

(6.22)

Regarding Newton-Raphson iterative procedure, one should notice that it may
not converge. In particular, this may be the case if the Hessian matrix is small. Even
if it converges, the point found may only be a local optimum. Hence, to avoid these
possibilities, it is beneficial to use several starting points.

6.4 ML Computational Complexity Analysis

From (6.5), to construct the ML cost function for a fixed φ0, M additions must
be performed. Also, the cost function must be evaluated at the measured TOAs.
If the rate function’s analytical equation is known, this does not impose a significant
amount of computational cost.

As the mathematical equation of the rate function is not usually available in
practice, its value at the TOAs must be found by interpolation. If a simple linear
interpolation is used, it costs four additions and two multiplications for each TOA.
Hence, the total computational cost, for a fixed φ0, is 6M flops. Similar to the NLS
or CC cases, because the cost function is not concave in general, adopting a grid
search optimization approach over (0,1) cycle is desirable. If the search interval is
divided into Ng grids, the total imposed computational cost due to the interpolation
is 6MNg flops. This means that the amount of interpolation computations also grows
as the number of received photons, M, increases.

6.5 Computational Complexity: Summary

Note that M � Np for long observations. Hence, compared to the NLS and CC
cases, the amount of calculations for the ML estimator significantly increases as
the observation time becomes longer. This is a noticeable disadvantage of the ML
approach compared to the NLS estimation. This is to be avoided for implementation
purposes. Hence, if the NLS or CC estimator’s variances are within an acceptable
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Table 6.1 Computational cost

Estimator Additions Subtractions Multiplications Divisions

CC Nb(Np−1)+(Nb−1)Ng N/A NbNg 2Nb +1
NLS Nb(Np−1)+NbNg NbNg NbNg 2Nb

ML M +4MNg N/A 2MNg N/A

distance from the CRLB, it is more convenient to implement one of them. This is
indeed the case. It is clear from (4.44) and (5.9) that the difference between the NLS
estimator’s variance and the CRLB becomes smaller as the observation increases.
As a result, especially for long observation times, implementation of epoch-folding-
based algorithms is computationally more efficient. Note that the ARE, given in
(5.39), can also be calculated for each pulsar to measure how far is the estimator’s
performance from the CRLB.

If the cross-correlation function is calculated using the time domain approach, the
computational cost for CC and NLS estimators is almost the same. As the correlation
function can be found using the Fourier domain approach, its computational cost is
expected to be less than the NLS estimator.

All computational cost results, presented in Sects. 5.6.2, 5.6.3, and 6.4, are sum-
marized in Table 6.1.

6.6 Absolute Velocity Errors

Similar to the CC and NLS cases, if the velocity errors on each spacecraft are almost
equal, Δv1 ≈ Δv2, this results in the same deterioration of initial phase estimation on
each detector. Hence, from (5.1), since the difference between the phase estimates
is employed for estimation of the pulse delay, it remains asymptotically unbiased.
However, the variance of estimation error becomes larger than the case where the
absolute velocities are perfectly known. This error can be modeled by increasing the
variance of the measurement noise in the Kalman filtering stage. If these assump-
tions are not valid, the absolute velocities can be estimated from (6.6).

6.7 Numerical Examples

The algorithm presented in Sect. 3.8 is used to generate the photon TOAs associ-
ated with the Crab pulsar (PSR B0531+21). The simulations are performed using
the Monte-Carlo technique with over 500 independent realization of photon TOAs
for each observation time. The constant arrival rates are chosen to be λb = 5 and
λs = 15 ph/s.

First, the ML phase estimator is numerically simulated on one detector. Then the
pulse delay performance is numerically examined. Finally, the computational cost
needed for calculation of all of the proposed estimators is studied.
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6.7.1 ML Phase Estimator

The spacecraft velocity on the direction vector pointing to the pulsar is assumed to
be v = 3 km/s; and the initial phase observed at the detector is φ1 = 0.2 cycle.

Figure 6.1 shows the RMS error of the MLE. The ML estimates are determined
by solving the optimization problem (6.18). A grid search approach on the interval
[0,1) cycle over 1,024 grids is utilized to solve (6.18). The ML plot shows that
the estimator attains the CRLB for long observation times. Similar to the CC and
NLS estimators, as the observation time drops below a certain threshold, the RMS
error deviates from the CRLB. This behavior is due the fact that in this region,
the maximum of the LLF does not lie in the vicinity of the true parameter and the
estimator is biased.

The cost function (6.5) is plotted in Fig. 6.2 for different observation times. The
plots show that as the observation time increases, the cost function becomes larger.
Figure 6.2 also show that each of the cost functions has multiple maxima. Hence,
they verify that, to avoid getting trapped in local maxima, adopting a grid search op-
timization approach is necessary. As the search is performed over the whole interval
(0,1) cycle, the algorithm initialization issues do not arise.

It is also verified that Λ(φ0) in (6.3) can safely be dropped from the cost function.
The ML phase estimates are found using (6.3) as the cost function. No meaning-
ful difference is observed between the obtained RMS errors and the ones obtained
using (6.5).
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Fig. 6.1 RMS error for maximum-likelihood estimator (MLE)
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Fig. 6.2 The ML cost function

6.7.2 Pulse Delay Estimator

Assuming the velocity data is available, the pulse delay estimator is numerically
evaluated. The spacecraft velocities are assumed to be v1 = 3 km/s and v2 = 9 km/s;
and the initial phase observed at the first detector is φ1 = 0.2 cycle. The relative
distance between the spacecraft is assumed to be 180 km. Hence, the pulse delay to
be estimated is td = 0.6 ms.

Figure 6.3 shows the RMS of the proposed pulse delay estimator, obtained
through simulation, against the CRLB, calculated as in (4.44). The plots show that
as time goes on, the estimator asymptotically attains the CRLB. The cost functions
(6.5) are optimized using a grid search approach in the domain of (0,1) cycle. Simi-
lar to NLS and CC estimators, as the observation time is reduced, there is a threshold
point at which the variance of the estimation error starts to deviate from the theoreti-
cal value. This is due to the fact that the estimator becomes biased if the observation
time is not long enough. The reason is that as the observation time goes below this
threshold, the number of detected photons is not high enough. Therefore, the real-
ization of TOAs does not effectively represent the rate function of received photons.
Hence, it results in a distorted cost function whose maximum does not lie in the
vicinity of the true phase delay.
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Fig. 6.3 RMS error for ML-based delay estimator

The performance of the proposed estimators is also studied when the absolute
velocity data is not perfectly known. The errors are assumed to be Δv1 = 1,000 and
Δv2 = 1,200 m/s. As Fig. 6.4 shows the RMS errors increase compared to the case
where the velocity data is perfectly known.

6.7.3 Computational Cost

Figure 5.1 shows that asymptotic performance of the CC and NLS estimators is
very close to the CRLB. This motivates the numerical implementation study of each
estimator. Hence, the CPU time used by MATLAB to perform the calculations for
one Monte Carlo realization is investigated. The utilized processor is an Intel 2.4
GHz dual core.

Figure 6.5 shows that the computational cost for linear interpolation used to cal-
culate the CC estimator is almost independent of the observation time. This is to be
expected, as the interpolation is performed at one point just to find a finer maximizer
for the cross-correlation function. It also shows that the linear interpolation used for
calculation of the MLE and the epoch folding have almost the same computational
complexity, and as expected, the amount of calculations almost linearly grows as
the observation time becomes longer.
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Fig. 6.4 RMS error for ML-based delay estimator in presence of spacecraft velocity errors
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Fig. 6.6 CPU time used for construction of the cost functions

From Fig. 6.6, it can be seen that the amount of calculations to construct the
CC and NLS cost functions does not change with the observation time. However,
the computational cost to form the ML cost function almost linearly grows as the
observation time becomes longer. It also shows that using Fourier domain approach
to calculate the CC cost function significantly reduces the amount of calculations.

The total CPU time used to find the CC estimator is the sum of the epoch fold-
ing time, the time used for construction of the CC cost function, and the parabolic
interpolation time. The total CPU time to find the NLS estimator is the sum of the
epoch folding time and the cost function construction time for all grid points. The
total CPU time for the MLE is the sum of the construction time and the total in-
terpolation time for all grids. The reason is that for each grid, an interpolation is
needed for the evaluation of the cost function at the measured TOAs. These plots
are all shown in Fig. 6.7.

As the plots show, the ML CPU time is bigger than the one for the NLS algorithm,
and it grows significantly faster with the observation time. The ML calculational
cost rate with respect to the observation time is almost 15 times bigger than the
NLS rate in this simulation scenario. Furthermore, the NLS CPU time is about 10
times bigger than the CPU time used to calculate the CC estimator.
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Fig. 6.7 Total CPU time used for calculation of the estimators

6.8 Summary

Using the pdf of the photon TOAs we construct an ML criterion, and formulate
an asymptotically efficient estimator of the initial phase and the Doppler frequency
for each detector. When the spacecraft velocity is known, it becomes only a phase
estimator. Although the MLE asymptotically achieves the CRLB, we show that its
computational cost is significantly higher than the epoch folding-based estimators.
Under certain conditions, the pulse delay estimator can be used even when the space-
craft absolute velocities are not perfectly known. We also verify the analytical results
on the MLE’s performance and the computational costs via numerical examples.





Chapter 7
Recursive Estimation

7.1 Introduction

In this chapter, a recursive algorithm is formulated which can be used to find the
relative navigation solution between the two spacecraft. The navigation system is
equipped with IMUs which provide the spacecraft acceleration data. The dynamics
of relative position between the two spacecraft and a model of the IMU accuracy are
utilized for developing the navigation algorithm. The measurements, which are ob-
tained by time tagging the photons, are modeled as a linear function of the projected
relative position onto the unit direction pointing to the pulsar plus the measurement
noise. The measurement noise variance is selected based on how well the pulse de-
lay is estimated. Then, by applying a Kalman filter, the relative position, the relative
velocity, the relative bias between accelerometers, and the differential time between
clocks are estimated, and the steady state estimation error covariance is obtained.
The effect of different system parameters on the achievable accuracy of relative po-
sition estimation is investigated. In particular, the effect of different values of IMU
uncertainty, measurement noise variance, and number of pulsars used for estimation
are considered.

We formulate the system dynamics for the navigation problem in Sect. 7.2.
The measurement equation is presented in Sect. 7.3. The Kalman filter is given in
Sect. 7.4. We investigate the observability of the system dynamics in Sect. 7.5. In
Sect. 7.6, we briefly explain how the proposed approach is applicable to the absolute
navigation problem. We offer a geometric approach for estimation of the spacecraft
absolute velocities in Sect. 7.7. Section 7.8 provides different numerical simulation
scenarios of the navigation system.

7.2 System Dynamics

X-ray pulsars are being observed over the sky map. All the measurements are per-
formed in an inertial system whose origin is the SSB. The directional location of the

pulsars is known. We denote this directional unit vector as H(i)
j , where i identifies

A.A. Emadzadeh and J.L. Speyer, Navigation in Space by X-ray Pulsars,
DOI 10.1007/978-1-4419-8017-5 7, c© Springer Science+Business Media, LLC 2011
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the pulsar and j denotes the spacecraft. It is assumed that the space vehicles are

close enough so that H(i)
1
∼= H(i)

2 = H(i).
Let Δx∈R3 be the relative position, Δv∈R3 be the relative velocity, and Δa∈R3

be the relative acceleration between the two spacecraft, and assume they follow the
following dynamics

ΔẊ = AΔX + BΔa + Gwv, (7.1)

where ΔX =
(
ΔxT ΔvT

)T
, the matrices are

A =
(

03×3 I
0 03×3

)

, B =
(

03×3

I3×3

)

, G =
(

I3×3

03×3

)

(7.2)

and wv is an independent zero mean white noise process with a known power spec-
tral density (PSD), denoted by Wv

E[wv(t)wv(τ)T] = Wvδ (t− τ). (7.3)

Each spacecraft is equipped with an inertial measurement unit which measures
its acceleration, a(i), as

a(i)
IMU = a(i) + w(i)

a + b(i)
a , i = 1,2 (7.4)

where w(i) is a white noise process with a known PSD, and b(i)
a is the accelerometer’s

bias. Let ΔaIMU be

ΔaIMU � a(1)
IMU−a(2)

IMU. (7.5)

Therefore, from (7.4)

ΔaIMU = Δa + ba + wa, (7.6)

where

Δa = a(1)−a(2) (7.7)

and

ba = b(1)
a −b(2)

a (7.8)

is the relative bias. Because it slowly varies, and to keep the Kalman filter open, it
is assumed to be a Brownian motion process, as

ḃa = wb, (7.9)

where wa and wb are zero mean independent white noise processes with known
PSDs, denoted by Wa and Wb

E[wa(t)wa(τ)T] = Waδ (t− τ) (7.10)

E[wb(t)wb(τ)T] = Wbδ (t− τ). (7.11)
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The relative distance is determined by integration of ΔaIMU,

ΔẊIMU = AΔXIMU + BΔaIMU, (7.12)

where ΔXIMU =
(
ΔxT

IMU ΔvT
IMU

)T
. Defining the error as,

Xe � ΔXIMU−ΔX (7.13)

from (7.1), (7.6), and (7.12), the dynamics of Xe are given by

Ẋe = AXe + Bba + Bwa + Gwv. (7.14)

The differential time is common among all X-ray detectors. To model its slowly
varying dynamics, and to keep the Kalman filter open (i.e., the Kalman gain does
not converge to zero) [58], it is assumed to be a Brownian motion process,

ṫe = we, (7.15)

where we is an independent zero mean white noise process with a known PSD,
named We

E[we(t)we(τ)T] = Weδ (t− τ). (7.16)

Collecting the unknown vectors Xe, ba, and te into the vector X as,

X �

⎛

⎝
Xe

ba

te

⎞

⎠ (7.17)

its dynamics are given by

Ẋ = FX + w, (7.18)

where

F =

⎛

⎝
A B 0

03×6 03×3 0
01×6 01×3 0

⎞

⎠ (7.19)

and

w �

⎛

⎜
⎜
⎝

wv

wb

wa

we

⎞

⎟
⎟
⎠ (7.20)

is an independent white noise process where

E[w(t)w(τ)T] = diag(Wv,Wb,Wa,We)δ (t− τ). (7.21)
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To obtain the discrete model, the system (7.18) is sampled with the sampling
time, Ts. The discrete model is as follows [59].

X(k + 1) = ΦX(k)+ wd(k) (7.22)

where

Φ = exp(FTs) (7.23)

and

wd(k) =
∫ Ts

0
exp(Fτ)w(τ)dτ. (7.24)

Note that F3 = 0. Therefore,

Φ = I + TsF +
T 2

s

2
F2 (7.25)

which equals

Φ =

⎛

⎜
⎜
⎜
⎝

I3×3 TsI 1
2 T 2

s I 0

0 I3×3 TsI 0

0 0 I3×3 0

0 0 0 1

⎞

⎟
⎟
⎟
⎠

. (7.26)

As w(t) is zero mean, from (7.24), wd(k) is zero mean as well

E[wd(k)] = 0 (7.27)

and

E[ωd(k)ωd( j)T] = Qδk j, (7.28)

where Q, which is the variance matrix of the process noise, is given in (7.29).

Q =

⎛

⎜
⎜
⎜
⎜
⎝

TsWv + Ts
3

3 Wa + T 5
s

20 Wb
Ts

2

2 Wa + Ts
4

8 Wb
Ts

3

6 Wb 0
Ts

2

2 Wa + Ts
4

8 Wb TsWa + Ts
3

3 Wb
T 2

s
2 Wb 0

T 3
s
6 Wb

Ts
2

2 Wb TsWb 0

0 0 0 TsWe.

⎞

⎟
⎟
⎟
⎟
⎠

(7.29)

7.3 Measurements

The pulse delay estimate for the ith pulsar is denoted by t̂(i)d . It is related to the
relative position via

ct̂(i)d (k) = ct̂(i)x + cte(k)+ η(i)
d (k)

= H(i)Δx(k)+ cte(k)+ η (i)
d (k), (7.30)
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where H(i) is the directional unit vector pointing to the ith pulsar, and η(i)
d (k) is an

independent zero-mean white noise sequence. The pulse delay estimates are avail-

able every Tm seconds. Hence, the autocorrelation function of η(i)
d (k) is

E[η(i)
d (k)η(i)

d ( j)
T
] = R(i)δk j, R(i) = c2var[t̂d](i), (7.31)

where var[t̂d](i) is the variance of the ith pulse delay estimator, obtained every Tm

seconds.
Let’s define the measurement with respect to the ith pulsar as

y(i)(k) � ct̂(i)d (k). (7.32)

Using (7.30), the measurements have the following discrete model

y(i)(k) = H(i)Δx(k)+ cte(k)+ η (i)
d (k). (7.33)

Employing N different pulsars, N measurements are available, which can be col-
lected into the following matrix format,

Y (k) = CΔX(k)+ c1te(k)+ ηd(k), (7.34)

where

Y �

⎛

⎜
⎜
⎜
⎝

y(1)

y(2)

...
y(N)

⎞

⎟
⎟
⎟
⎠

, C �

⎛

⎜
⎜
⎜
⎝

H(1) 01×3

H(2) 01×3
...

H(N) 01×3

⎞

⎟
⎟
⎟
⎠

(7.35)

and

ηd �
(

η (1)
d η (2)

d . . . η(N)
d

)T
. (7.36)

The measurement noise, ηd(k), is an independent white zero-mean process, and

E[ηd(k)ηd( j)T] = Rδk j, (7.37)

where

R = diag
(

R(i)
)

, i = 1, . . . ,N (7.38)

is the measurement noise variance matrix.
Recall that from (7.17), ΔX = ΔXIMU−Xe. Therefore, (7.34) can be restated as

Z(k) �−(Y (k)−CΔXIMU(k))
= CXe(k)− c1te(k)+ η(k), (7.39)
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where η(k) =−ηd(k), which is clearly an independent zero mean white noise with
the same power spectral density as ηd(k). Using (7.17), the measurement (7.39) can
be expressed as a function of X(k)

Z(k) = HX(k)+ η(k) (7.40)

where,

H =
(
C 0N×3 −c1

)
. (7.41)

To estimate the relative position, the relative velocity, the relative biases, and the
differential time between clocks, the dynamic system in (7.22), and the measure-
ment equation in (7.40) will be employed in a Kalman filter.

7.4 Discrete Time Estimation Process

Let X̂ (−)
k be the a priori system state estimate at time k, and P(−)

k be the a priori
estimation error covariance, which are based on all measurements up to Zk−1. Sim-

ilarly, let X̂ (+)
k and P(+)

k denote the a posteriori estimate and covariance matrix after
the measurement Zk has been processed. Assuming that measurements start at k = 0,
the Kalman filter equations in discrete time are as follows [58, 59].

The filter’s initial values are set as

X̂ (−)
0 = E[X0] (7.42a)

P(−)
0 = E[(X0− X̂ (−)

0 )(X0− X̂ (−)
0 )T] (7.42b)

and the state estimates are updated as

Kk = P(−)
k HT[HP(−)

k HT + R]−1 (7.43a)

X̂ (+)
k = X̂ (−)

k + Kk[Zk−HX̂ (−)
k ] (7.43b)

P(+)
k = [I−KkH]P(−)

k [I−KkH]T + KkRKT
k (7.43c)

X̂ (−)
k+1 = ΦX̂ (+)

k (7.43d)

P(−)
k+1 = ΦP(+)

k ΦT + Q. (7.43e)

Note that the measurements (7.40) are available at a lower rate than the posi-
tion estimate updates. Hence, when no measurement is available, the a priori and a
posteriori estimates are equal. In other words, (7.43b) must be replaced by

X̂ (+)
k = X̂ (−)

k (7.44)

in the meantime between the pulsar measurements (7.40) become available.
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7.5 Discussion

For the Kalman filter to estimate all the unknown states, the dynamic system (7.22)
and (7.40) must be observable. Hence, the observability matrix is investigated.
It equals

O =

⎛

⎝
H

HF
HF2

⎞

⎠

=

⎛

⎝
Γ 0 0 −c1
0 Γ 0 0
0 0 Γ 0

⎞

⎠ (7.45)

where

ΓN×3 =

⎛

⎜
⎜
⎜
⎝

H(1)

H(2)

...
H(N)

⎞

⎟
⎟
⎟
⎠

. (7.46)

Note that O is an 3N×10 matrix. If there are at least four different pulsar mea-
surements (N ≥ 4) where no two are along the same directional vector from the
spacecraft, then O will be full column-rank (i.e., rank 10). Hence the continuous
system (7.18) is observable using the measurement (7.40). To conclude about the
observability of discrete dynamics (7.22) and (7.40), the following theorem is em-
ployed [60].

Theorem 7.1. Suppose the continuous system (7.18) and (7.40) is observable. A
necessary and sufficient for its discretized equations (7.22) and (7.40), with sam-
pling period Ts, to be observable is that |Im[λi−λ j]| �= 2πm/Ts for m = 1,2, . . . ,
whenever Re[λi−λ j] = 0, where λi is an eigenvalue of F.

Because all eigenvalues of the matrix F are zero, then

|Im[λi−λ j]|= 0

�= 2πm
Ts

. (7.47)

Therefore, it can be concluded that the discretized system is fully observable too, if
O is full column-rank.

As a result, by choosing at least four different pulsars with different direction
vectors, all the states can be estimated using the Kalman filter.
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7.6 Absolute Navigation

The proposed navigation approach is applicable for absolute navigation as well. It
is clear that if the location of one of the spacecraft is known, the relative naviga-
tion problem boils down to an absolute navigation problem. As the location of the
SSB is known, placing one of the spacecraft at the SSB, using the same problem
formulation, the absolute navigation solution can be obtained.

7.7 A Geometric Approach for Estimation of Absolute Velocities

In this section, we propose a different formulation of the navigation problem, using
geometric dispersion of the X-ray pulsars over the sky map.

For simplicity, a two-dimensional scenario where four pulsars are utilized is con-
sidered (see Fig. 7.1). The ith pulsar’s estimated time delay is composed of the true
pulse delay and the differential time between clocks. From (5.1), and using Taylor
series, it equals

t̂(i)d = t(i)x + te

=
Δφ̂ (i) + n(i)

(1 +Vj cosθi/c) f (i)
s

≈ Δφ̂ (i) + n(i)

f (i)
s

(

1− Vj cosθi

c

)

, (7.48)

jV
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Fig. 7.1 Using pulsar geometry to estimate absolute velocities
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where Δφ̂ (i) = φ̂1
(i)− φ̂2

(i)
, Vj is the absolute velocity vector of the jth spacecraft, θi

is the angle between Vj and H(i), and n(i) is the uncertainty modeling for the phase
estimation error. Hence,

Δφ̂ (i)

f (i)
s

= t(i)x + te +
Δφ̂ (i)

f (i)
s c

Vj cosθi +η(i), (7.49)

where

η(i) =−n(i)
(

1− Vj cosθi

c

)

. (7.50)

Defining the ith pulsar measurement as z(i) = Δφ̂ (i)/ f (i)
s , (7.49) becomes

z(i) = t̂(i)x + te + z(i)Vj cosθi

c
+ η(i). (7.51)

Because t̂(i)x = H(i)Δx/c, the new set of measurements is

z(i) =
H(i)Δx

c
+ te + z(i)Vj cosθi

c
+ η (i). (7.52)

Furthermore, the angular relations between directional vectors form a set of
pseudo-measurements

θ p
1 = θ1−θ2 + γ1 (7.53a)

θ p
2 = θ2 +θ3 + γ2 (7.53b)

θ p
3 = θ4−θ3 + γ3, (7.53c)

where γi is the uncertainty. Using (7.52) and (7.53) as measurements, a new Kalman
filter can be formulated for estimation of Δx, Vj , and θi.

7.8 Numerical Examples

To simulate the three-dimensional navigation algorithm, eight pulsars are selected
(see Fig. 7.2 for pulsar geometry). The pulsar profiles are shown in Fig. 4.2. The
pulsar galactic coordinates, and their photon flux values are given in Table 7.1 [19].

The detector area is assumed to be 104 cm2. The effective pulsar rate, λs, is
calculated according to the pulsar photon flux and the detector area. The effective
background rate is chosen as λb = �λs/10�. The corresponding values are given in
Table 7.2.

In three different scenarios, the measurements are incorporated every 100 s,
and every 500 s. The NLS-based pulse delay estimation approach is utilized, and
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Fig. 7.2 Pulsar geometry on the sky map

Table 7.1 Employed pulsars

Galactic Galactic Flux (2–10 keV)
Pulsar Period (s) longitude (◦) latitude (◦) (ph/cm2/s)

B0531 + 21 0.0335 184.56 −5.78 1.54E + 00
B0540− 69 0.0504 279.72 −31.52 5.15E− 03
B0833− 45 0.0893 263.55 −2.79 1.59E− 03
B1509− 58 0.1502 320.32 −1.16 1.62E− 02
B1821− 24 0.0031 7.80 −5.58 1.93E− 04
B1937 + 21 0.0016 57.51 −0.29 4.99E− 05
B1055− 52 0.1971 164.50 −52.45 1.64E− 06
J0437 − 47 0.0057 253.39 −41.96 6.65E− 05

Table 7.2 Employed pulsars (detector area: 104 cm2)

λb λs σm (m) σm (m)
Pulsar (ph/s) (ph/s) (Tobs = 100 s) (Tobs = 500 s)

B0531 + 21 1.54E + 03 1.54E + 04 5.64E + 2 2.52E + 2
B0540− 69 5.15E + 00 5.15E + 01 3.46E + 4 1.54E + 4
B0833− 45 1.59E + 00 1.59E + 01 4.67E + 4 2.09E + 4
B1509− 58 1.62E + 01 1.62E + 02 8.62E + 4 3.86E + 4
B1821− 24 1E + 00 1.93E + 00 4.56E + 3 2.04E + 3
B1937 + 21 1E + 00 4.99E− 01 4.53E + 3 2.02E + 3
B1055− 52 1E + 00 1.64E− 02 1.67E + 8 7.49E + 7
J0437 − 47 1E + 00 6.65E− 03 1.11E + 5 4.99E + 4

σ (i)
m =

√
R(i) values corresponding to each scenario are given in Table 7.2. The

spacecraft absolute velocity data are not perfectly known. The velocity errors are
assumed to be Δv1 = 1000 and Δv2 = 1200 m/s. Note that because of the effect of
absolute velocity errors on the quality of measurements, the measurement noise
variance values are bigger than their corresponding analytical values when the
velocity data is perfectly known.
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To initiate the Kalman filter, the a priori covariance matrix is chosen as

P0 = diag(P0x,P0v,P0ba ,P0te), (7.54)

where
√

P0x = diag(106,106,106) (m) (7.55a)
√

P0v = diag(104,103,102) (m/s) (7.55b)
√

P0ba
= diag(100.5,100.5,100.5) (m/s2) (7.55c)

√
P0te

= 103 (s). (7.55d)

The a priori state estimate at k = 0 is X̂ (−)
0 = 0. Note that although the initial

uncertainties given in (7.55) change the transient response of the Kalman filter, they
do not affect its steady state performance.

The IMU process noise PSDs used by the Kalman filter are given in (7.56). Note
that to simulate the dynamics (7.22), it is assumed that Wb = 0 and We = 0, since
they are assumed to be constant states. Although, they follow slowly time varying
dynamics in practice. Hence, to take this fact into account, and to keep the Kalman
filter open, they are modeled as Brownian motion processes in the estimation stage.

√
Wv = 10−6I (m/

√
s) (7.56a)

√
Wa = 10−7I (m/

√
s3) (7.56b)

√
Wb = 10−5I (m/

√
s5) (7.56c)

√
We = 10−6 (

√
s) (7.56d)

The units in (7.56) are obtained from (7.29), noting that the diagonal elements
have units m2, (m/s)2, (m/s2)2, and s2, respectively.

In (7.56), the accelerometer bias uncertainty, Wb, is chosen small based on the
fact that the available IMUs are very accurate. These values are easily achievable
by available commercial IMUs such as LN200 [61]. Choosing other Wb values
only affects achievable estimation accuracies. The accelerometer uncertainty, Wa,
represents the applied forces to the spacecraft from the celestial sources (ex. solar
radiation pressure). Hence, it is chosen small as well.

To find out how accurate the relative distance between the spacecraft can be esti-
mated, the state estimation error, and the standard deviation (STD) of the a posteriori
estimation error are investigated. In other words, the square roots of the diagonal el-

ements of P(+)
k are considered. Note that using (7.17), the standard deviation of X̂e

equals to the standard deviation of ΔX̂ , which represents the relative position and
relative velocity vectors between the spacecraft. All results are obtained through
Monte Carlo simulation over 3,000 independent realization of the stochastic signals.
Different sampling times, Ts, are chosen for discretizing the continuous dynamics.
As expected, Ts does not change either the error covariance in the steady state or the
time that the steady state is reached; however, the number of iterations to get to the
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same values of the error covariance varies. The initial state of the dynamic system
(7.22) is assumed to be a Gaussian random variable

X0 ∼N (0,P0), (7.57)

where P0 is given in (7.54).
In all scenarios the Monte Carlo state estimation error, obtained by averaging

over 3,000 realizations, is observed to be zero. Hence, its plots are omitted. The
Monte Carlo a posteriori standard deviation, along with the analytical one obtained
from (7.43c) are plotted, and it is shown that they satisfactorily match. The analyt-
ical values that are computed in the Kalman filter are based on modeling some of
the variables as Brownian motion, as opposed to the simulation model where the
variables are assumed to be slowly varying (in some cases constants). As a result,
the simulation STD plots may not perfectly match the analytical values, but they are
very close.

The estimation error obtained from one [example] realization is plotted as well.
As expected, we can see that at any time epoch, most of the Mote Carlo estimation
error points are within the 1-σ envelope.

In the first scenario, eight pulsars listed in Table 7.1 are selected, and the mea-
surements are obtained every 100 s. The results are plotted in Figs. 7.3–7.6. The
obtained estimation accuracies are given in Tables 7.3, 7.4, and 7.5.
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Fig. 7.3 Relative position estimation (N = 8, Tobs = 100 s)
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Fig. 7.4 Relative velocity estimation (N = 8, Tobs = 100 s)
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Fig. 7.5 Relative bias estimation (N = 8, Tobs = 100 s)
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Fig. 7.6 Clock differential time estimation (N = 8, Tobs = 100 s)

Table 7.3 Position
estimation results

Scenario
√

Px (m)
√

Py (m)
√

Pz (m)

N = 8, Tobs = 100 s 1.93E + 3 6.74E + 3 3.87E + 4
N = 8, Tobs = 500 s 1.16E + 3 4.97E + 3 3.21E + 4
N = 4, Tobs = 100 s 2.16E + 4 4.12E + 4 6.83E + 4

Table 7.4 Velocity estimation results

Scenario
√

Pvx (m/s)
√

Pvy (m/s)
√

Pvz (m/s)

N = 8, Tobs = 100 s 7.52 21.87 92.96
N = 8, Tobs = 500 s 2.09 7.91 47.55
N = 4, Tobs = 100 s 15.21 114.78 183.08

Table 7.5 IMU Bias and clock differential time estimation results

Scenario
√

P(x)
b (m/s2)

√
P(y)

b (m/s2)
√

P(z)
b (m/s2)

√
Pe (sec)

N = 8, Tobs = 100 s 1.31E−2 3.74E−2 1.34E−1 1.32E−5
N = 8, Tobs = 500 s 1.59E−3 5.87E−3 3.45E−2 1.14E−5
N = 4, Tobs = 100 s 2.05E−2 1.80E−1 2.15E−1 8.01E−5
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In the second scenario, employing the same pulsars, the measurements are
provided every 500 s. Hence, the measurement noise STD values decrease. The
corresponding values are given in Table 7.2. As Figs. 7.7–7.10 show, using more
accurate measurements, results in obtaining more accurate estimates. The estima-
tion results are given in Tables 7.3, 7.4, and 7.5.

In the third scenario, to investigate the effect of the pulsar geometry on the esti-
mation accuracy, just the first four pulsars from Table 7.1 are chosen for navigation.
The measurements are updated every 100 s. The plots are shown in Figs. 7.11–7.14,
and the resulted accuracies are given in Table 7.3. As expected, compared to the
case where eight pulsars were employed, the estimation error standard deviations
have increased (Tables 7.3, 7.4, and 7.5).

Recall from (7.33) that the relative position, Δx, and the differential time between
clocks, te, show up directly in the measurements. Hence, we expect the Kalman
filter to be able to estimate them immediately, and it takes longer for the relative
bias and velocity estimates to converge to the steady state values. From the a priori
initial standard deviations, given in (7.55), and using the estimation plots shown in
Figs. 7.3–7.14, this can be verified where the a posteriori position and differential
time estimation standard deviations dramatically drop when the first measurements
is incorporated at t = 0.

Another interesting point regarding Tables 7.3, 7.4, and 7.5 is that the
x-coordinate estimates are more accurate than the y-coordinate estimates. Consider-
ing Fig. 7.2, we expect this phenomenon. As the sky map shows, the employed
pulsars are geometrically more distributed along the x-axis than the y-axis.
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Fig. 7.7 Relative position estimation (N = 8, Tobs = 500 s)
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Fig. 7.8 Relative velocity estimation (N = 8, Tobs = 500 s)

Furthermore, Tables 7.3, 7.4, and 7.5 show that the z-coordinate estimates are
less accurate than the x- and y-coordinate estimates. This implies that the pulsars
geometric distribution along the z-axis is worse than the other axes.

In summary, we investigated effectiveness of the proposed algorithm through
different simulation scenarios. Achievable estimation accuracies depend on different
elements of the navigation system. The main factors are the pulse delay estimation
accuracies, the IMU accuracies, and the pulsars geometric distribution on the sky
map.

We have also performed a parametric study to investigate the range of achievable
accuracies as a function of the quality of measurements. All simulation parameters
are the same as the scenario where N = 8 and Tobs = 500 s. The only difference
is the steady state STD of estimation errors are obtained for kRσm in the range of
0.1≤ kR ≤ 10, where σm values are the measurement noise standard deviations for
Tobs = 500 s, given in Table 7.2. The results are plotted in Figs. 7.15–7.18. From
these plots, the range of estimation accuracies are given in Table 7.6.

These ranges show that employing bright pulsars, position estimation accuracies
in the order of a couple of 100 m are achievable for position estimation. The velocity
estimation accuracies in the order of a few meters per second can be obtained. The
attainable bias estimation accuracy is less than 1 mm/s2. Furthermore, the differen-
tial time between clocks can be estimated in the order of a few micro seconds.

The effect of the IMU uncertainty on relative navigation solution is also inves-
tigated. All parameters are the same as the scenario where N = 8 and Tobs = 500 s.
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Fig. 7.9 Relative bias estimation (N = 8, Tobs = 500 s)
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Fig. 7.10 Clock differential time estimation (N = 8, Tobs = 500 s)
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Fig. 7.11 Relative position estimation (N = 4, Tobs = 100 s)
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Fig. 7.12 Relative velocity estimation (N = 4, Tobs = 100 s)
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Fig. 7.13 Relative bias estimation (N = 4, Tobs = 100 s)
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Table 7.6 Estimation results when R or Q matrices change

R varies Q varies

Min Max Min Max
√

P(x)
b (m) 142.42 8438.4 852.27 1423.6√

P(y)
b (m) 516.83 2946.8 2947.5 5157.0√

P(z)
b (m) 3051.2 169950 17137.0 30406.0

√
Pvx (m/s) 0.2489 4.6571 0.4737 2.4889

√
Pvy (m/s) 0.5076 13.6063 1.3696 5.0678

√
Pvz (m/s) 1.9286 64.1779 7.0152 19.1681

√
P(x)

b (m/s2) 3.3694E−4 0.0012 0.12515 0.0034√
P(y)

b (m/s2) 4.1967E−4 0.0032 0.3271 0.0042√
P(z)

b (m/s2) 6.9230E−4 0.0137 0.0016 0.0069
√

Pe (s) 1.1508E−6 5.7419E−5 5.7494E−6 1.1473E−5
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Fig. 7.19 The STD of position estimation error

The only parameters that are changed are the IMU uncertainties. Let σp be any of the
IMU uncertainties given in (7.56d). Then, the achievable estimation accuracies are
examined for kQσp, where 0.1≤ kQ ≤ 10. The results are plotted in Figs. 7.19–7.22.
The minimum and maximum accuracies are also given in Table 7.6.
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Fig. 7.22 The STD of differential time estimation error

7.9 Summary

In this chapter, we present a recursive navigation algorithm. We utilize the pulse
delay estimates to construct the measurements for a Kalman filter. We suggest to
employ IMUs on each spacecraft to provide the acceleration data. Using the Kalman
filter, we offer a recursive algorithm to estimate the relative position, the relative ve-
locity, the relative accelerometer biases, and the differential time between clocks.
Through different simulation scenarios, applicability of the propose navigation al-
gorithm is also verified.



Chapter 8
Epilog

This book has proposed a new approach for navigation of spacecraft in space
employing X-ray pulsar measurements. The presented approach is applicable for
both absolute and relative navigation problems. Pulsars emitting in the X-ray band
were chosen because of their stable period and their geometric distribution in the
sky map. The main advantage of using X-ray pulsars for navigation is that rela-
tively small size detectors can be used for detection of the X-ray photons on board
a spacecraft. This facilitates the spacecraft design procedure.

The developed navigation technique is based on utilizing X-ray detectors on each
spacecraft and locking the detectors on the same pulsar. Hence, the vehicle farther
from the pulsar detects a signal whose intensity is the time delayed version of the
one detected by the closer vehicle. The distance between the space vehicles is pro-
portional to the time delay. The proposed approach is to periodically estimate the
pulse delay, and then use these estimates as measurements in a recursive algorithm
to find the navigation solution. To analyze the system, mathematical models were
developed for the X-ray pulsar signals, and the Cramér–Rao lower bound for es-
timation of the pulse delay was presented. Two different strategies for estimation
of the pulse delay were suggested. One strategy was to employ epoch folding.
The procedure, which is used to recover photon intensities, was mathematically
studied and characterized. Two different estimators based on epoch folding were
formulated and their asymptotic performance was analyzed. One estimator uses the
cross-correlation function between the empirical rate function and the known pul-
sar intensity function. The other estimator is obtained through solving a nonlinear
least squares problem. It was shown that these estimators are consistent, but not
asymptotically efficient. The second strategy was to directly utilize the measured
photon time of arrivals. Using this strategy and based on a maximum likelihood cri-
terion, a pulse delay estimator was formulated, and it was shown that the estimator
is asymptotically efficient. It was shown that the cross-correlation-based estimator
is computationally more efficient than the other two estimators.

Space vehicles are equipped with inertial measurement units to provide the accel-
eration information, which are converted to velocity data and utilized by the pulse
delay estimator. The pulse delay estimates, in turn, are taken in as measurements
by the Kalman filter for recursive estimation. The measurement noise variance
is selected based on accuracy of the pulse delay estimates. Models of spacecraft
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dynamics and inertial measurement units are employed by the proposed algorithm.
It was shown that the relative inertial measurement unit biases and the differen-
tial time between detectors’ clocks can be estimated as well as the relative position
and velocity between the spacecraft. The three-dimensional relative navigation so-
lution can be obtained by taking measurements on four or more different X-ray
pulsars. Depending on the number of pulsars, their characteristics, their geometric
distribution in the sky, and inertial measurement unit uncertainties, the achievable
estimation accuracies were examined.

To enhance the position estimation accuracy, improving models of the spacecraft
motion and IMU dynamics is necessary for future work. Because some models are
now nonlinear, employing filtering techniques such as the extended Kalman filter
and the unscented Kalman filter may be appropriate. Modeling clock errors and
studying their effect on the navigation solution are necessary to obtain more accurate
results. Furthermore, to estimate the system biases with more precision, smoothing
algorithms may be utilized. Developing signal processing techniques for estimation
of the pulse phase when spacecraft velocities are varying rapidly is another necessity
for improving the navigation algorithm. Additionally, it is of interest to investigate
the navigation problem in more detail in situations where Doppler frequencies and
pulse phases are simultaneously estimated. Proposing pulse delay estimators for
these situations and analysis of their performance are important areas of future re-
search. Addressing the cycle ambiguity problem is another topic to work on. Also,
taking advantage of pulsar geometry for new formulations of the navigation prob-
lem, is an interesting field for enhancing the pulsar-based navigation solution.
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