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Abstract—A major concern for Air traffic controllers
(ATC) are facing on a daily basis are controlled Airspace
(CAS) infringements. An infringement is when aircraft
penetrates CASs without an advanced clearance from the
ATC. These infringement may cause a conflict or a mid-
air collision with a commercial aircraft flying within CAS.
As a result, a ground based safety net called Controlled
Airspace infringement Tool (CAIT) is used by ATCs which
warns them if any aircraft within uncontrolled airspace
(UCAS) has penetrated (CAS). In our previous paper, we
developed a probabilistic CAS infringement tool (PCAIT)
that predicts future aircraft locations using the Kalman
filter and calculate their probability of infringement. In
this paper, we review the factors behind CAS infringe-
ments and build a classifier based on them to enhance our
decision about future infringements. This model ”warning
system” could provide ATCs with more time to resolve any
possible future conflicts.

Index Terms—Kalman filter, Controlled airspace,
airspace infringement, safety net, Support vector ma-
chines.

I. Introduction

Most countries have airspace divided into seven
classes; five of which are controlled and monitored
by ATCs and two uncontrolled airspace (UCAS) where
ATC is not required to monitor. However, any pilot
flying within UCAS and about to fly into CAS, it is
essential for him or her to communicate with ATC and
get an advance clearance to avoid possible future con-
flicts. A conflict is when one aircraft loses its minimum
separation to another. The minimum separation for
an aircraft is 5 nautical miles horizontally and 1000ft
vertically. The separation standard around airport area
is 3 nautical miles horizontally.

The ATC monitors the traffic of CAS using informa-
tion gathered from radars scattered around different
CAS grounds. Currently, ATCs are using a ground
based safety tool called Controlled airspace infringe-
ment tool (CAIT) to monitor infringements. It warns
them if one or several aircraft had penetrated CAS
zones.

These infringements are a major safety concern to
ATCs and every aircraft around the conflict zone. They
can cause a possible conflicts with different commercial

aircraft. They also cause disruption to flight operations
by adding more workload on the pilot and the ATC
such as changing the flight routes and finding a safe
manoeuvre to avoid a collision.

The majority of these infringements are light weight
aircraft which rely on visual flight rules (VFR). There-
fore, ATC wont be able to know the infringing aircraft
ID or its flight path unless the pilot contacts them. In
addition to small aircraft infringements, a number of
reported drones were spotted by pilots around airport
areas.

To aid ATCs with conflict resolution, CAIT was
developed to detect any infringements that occurred.
However, it only warns the ATC if it has already
infringed the CAS which gives the ATC less time to
resolve any possible conflict that may arise. In our
previous paper, we examined the follwing:

1) Building two prediction models: Constant veloc-
ity and constant acceleration Kalman filters

2) On-line learning of the Kalman filter’s errors
3) Reviewed and extended available probability of

infringement methods
This will provide advance warning to ATCs for them to
resolve it and maintain the flow of aircraft in the CAS
in the same time. In this paper, we will examine the
factors behind infringements and merge them with our
current model to warn ATC with minimal false alerts.

The paper is organised as follows: in Section II is the
literature review; in Section III is the probability of in-
fringement using PCAIT; in Section IV is infringement
frequency analysis; In Section V classification using
flight information; In Section VI is our warning system
and results. Finally, the conclusion and the proposed
future work are presented in Section VII

II. Literature Review on Conflict Detection

Several researches were introduced to solve the
issue of a conflict between two aircraft. Some have
developed new models with their own conflict
detection algorithms and others have optimised
current models used by ATCs. Different approaches
to determine the probability of a conflict and conflict

2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)

978-1-5090-5844-0/16/$31.00 ©2016 IEEE



resolution have been introduced: one approach
adopted was by Yang and Kuchar [1] who created an
alerting system for free flight that uses Monte Carlo
simulations (MC) to estimate the probability of a
conflict of traffic encounters over time. Because it is
a free flight alerting system, they assumed that there
is a data-link between aircraft to communicate with
each other in the airspace. The idea of the data-link is
to collect other aircraft’s information in the airspace,
such as current state and future trajectory. The current
state information for both aircraft contains speed,
heading and altitude which are then fed into the
MC engine as the initial state. Each MC run projects
a path for both aircraft and predicts if a conflict is
ahead. The prediction process issues an alert when
the host aircraft’s protected zone is violated by an
intruder aircraft. The protected zone was divided
into four stages (where 1 means a remote intruder
whereas 4 means nearby intruder and Air Traffic
Controllers should take control from here). The size of
the protected zone is a trade off between the successful
alerts (SA) and unnecessary alerts (UA) and it was
examined by using a System Operative Characteristic
(SOC). Using Monte Carlo simulations with on-
line applications are computationally expensive
because prediction models are limited within time
constraints. To reduce the amount of computation,
Yang and Kuchar [2] proposed in other research
incorporating intent information into the Monte
Carlo simulation engine. Their method was that by
knowing the waypoints of two aircraft, they can
create a series of straight segment lines between these
waypoints, where each endpoint represents a change
of heading or speed. Then check if the host’s segment
line intersects the intruder’s trajectory line.The Monte
Carlo simulation engine is fed with intent information,
current state, protected zone size and uncertainties
such as tracking errors, manoeuvring characteristics
then outputs a probability of a conflict P (conf lict).
Another study was conducted in [3] to predict a
conflict in free flight; their method is applied to two
aircraft travelling along a straight line with constant
errors. They modelled the trajectory prediction errors
as randomly distributed based on the live air traffic
data and combined covariance error pairs into a single
covariance error relative to the position, this was
done because common errors cancel each other. The
conflict probability prediction is the area under the
combined error ellipse within the extended conflict
zone. A recent research conducted in [4] under
the SESAR WP-E project. Their aim was to build a
model which can predict future location of a general
aviation aircraft using historical flight paths as an
input and produce future paths and the way it is
delivered to the ATC management. Their system
was meant to help the ATC know about the future

volume of flight operations and trigger an alert if
the aircraft is approaching controlled Airspace. Their
method assumes that the aircraft would be equipped
with transceivers and receivers communicating with
a ground system. This ground system gathers the
information broadcast by the airborne transceivers
and predicts the flight path ahead.

Generally, light weight aircraft are not equipped
with advanced transponder that a commercial aircraft
has which sends their information to the ATC. In order
for these aircraft to be detected, the ATC will have
to rely on two things: the primary surveillance radar
which only detects the location of the aircraft with
imprecise altitude; and the pilot communication. Since
most aircraft fly under VFR, they do not have specific
flight path. A survey was conducted by Eurocontrol [5]
to find out why infringements occur more frequently.
These are the common reasons:
• Pilot is unfamiliar with the airspace and/or its

boundaries.
• Avoid a bad weather such as scattered clouds
• Pilot is unsure of airspace or lost
• Pilot experience
• Lack of published VFR routes
• Outdated maps or GPS database
In this research we are aiming to enhance our alert-

ing system (PCAIT) by analysing a collection of past
infringements and apply them to our model as warning
system as whether to alert ATC 5 locations steps ahead.

III. Probability of infringements using PCAIT

We developed a switching Kalman filters in [6] with
an online error learning as our tracking method. We
developed two KFs where each has the following pa-
rameters:

λm = (Am,H,Qm,R)

where m is the flight mode (constant velocity and
constant acceleration). Both Am and H are state and
observation transition matrices and will be fixed
the entire prediction process. Both Kalman filters
(KFcv ,KFca) state error covariances (Qcv ,Qca) are being
learned using the expectation maximisation algorithm
to eliminate them from being propagated with time.
Figure 1 shows (a) both KFs prediction locations after
5 steps ahead. Each step is 4 seconds, the time (it
takes a radar to make one revolution). In this figure,
the aircraft has infringed CAS zone (black polygon).
To measure both KFs accuracies in (b), we plotted
their probability of the 5th prediction locations given
the observation at that time. The blue and red lines
represent the probability of the 5th step predictions
using CV and CA KFs respectively. We noticed that
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(a) 5 step predictions of real observation

(b) Probability of the 5th step prediction for
both KFs

Fig. 1: Example of flight path predictions with their
probabilities

CA KF predictions has a higher probability than CV
when the aircraft makes a turn.

To find their probability of infringement Pm(i), we
used two methods: Monte carlo sampling (MC) and
shortest distance (SD) in [7]. It uses the aircraft predic-
tion x̂t and its error covariance P̂t (zone of uncertainty
around the prediction) to find P (I)t .

A. Monte Carlo Sampling
The MC sampling draws a random number of sam-

ples N from the prediction error covariance P̂t , then
calculates the fraction of samples which fall inside the
CAS as follows:

P (I) =
#of samples ∈ CAS

N

B. Shortest Distance Method
Here it calculates the shortest distance d from the

prediction to the nearest CAS boundary C to estimate
the probability of infringement. Given d, x̂t and P̂t , it
uses the error function to find P (I) as follows:

P (I) =
1
2

+
1
2
erf (

d
√

2
) , x̂t ∈ CAS

P (I) =
1
2
− 1

2
erf (

d
√

2
) , x̂t < CAS

In figure 2, it shows the probability of infringement
for the 5th steps ahead for (CV,CA) models shown

in figure 1 using both methods. Because SD method
accuracy around a CAS corner is low, we use MC
sampling instead. In the next section we will analyse

Fig. 2: Probability of infringements for 5th-step pre-
dictions using both methods

the factors or infringements and their frequency.

IV. Infringements Frequency Analysis

We used over 27000 collection of infringements
occurred in the UK during the year 2008. They
were scattered over 90 CAS zones around Lon-
don heathrow airport. It contains their location
(Easting,Northing,Altitude), time of infringements,
duration inside CAS zone and the CAS zone num-
ber. Figure 3 shows a geographic view of all aircraft
infringed various CAS boundaries over south eastern
UK. We calculated the frequency of the information

Fig. 3: All infringements occurred during 2008

provided below:

A. Time, Month and CAS Zone
Since most pilots use VFR, the majority of infringe-

ments occurred during the day time from 8 am - 9
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(a) Time of infringement frequency

(b) Monthly infringement frequency

Fig. 4: The number of infringements by the time and
month

pm. For the months however, the most frequent ones
were during the summer time (May-September). Figure
4 below shows the a) frequency of infringement by the
hour b) the frequency by the month. We then looked
at all of the infringements occurred with respect to
CAS zones. Figure 4 shows the frequency of aircraft
infringement given time, month and the CAS zone. It
appears that CAS zones number from 1-20 had the
most infringements.

Fig. 5: Most Frequent CAS zone infringements with
respect to time and month of the year

By looking at figure 5, it shows a concerning amount
of infringements since they arise more frequently dur-
ing the months and times where major airports such
as Heathrow are the busiest. Figure 6 shows our model
design where we will use this information as inputs

to our classifier and outputs the decision whether to
alert ATC of future infringements or not. In the next

Fig. 6: Overall design of our model

section, will introduce the classifier used to enhance
our warning system using the the frequency and data
analysis provided in this section.

V. Classification Using Flight Information

Monitoring CAS zones is an ATC top priority, there-
fore, reducing the amount of false alerts and providing
a warning is crucial. As result, given the statistics in
figure 4; we will use them as our training set to build
a classifier. Since we only have flight information that
infringed CAS zones, we will use a one class Support
Vector Machine (SVM) as our classifier.

One Class Support Vector Machine

A support vector machine is a type of a learning
method in machine learning which uses different types
of algorithms (depends on the application) for classi-
fication or regression. In classification it distinguishes
a given data set from one class or another in higher
dimension. In our case, we will use the one-class
classification to identify one class from another. Here
it is assumed that only data of one of the classes is
available, i.e data that infringed CAS zone. This means
that just this flight information can be used as training
set and that no information about the other class that is
”flight information with no infringements” is present.
The distinction between classes here, is done by defin-
ing a boundary around the trained one class, such
that it allows as much of the target object as possible
”infringement occurred”, while minimizing the chance
of accepting outlier objects ”no infringement”. The
separation boundary between target objects and the
outliers is constructed by a set of support vectors in a
higher dimension using a hyperplane. When providing
OCSVM a new set of objects Xnew = {x1,x2, ...,xn}, it
classifies them as similar or different to the training set
and outputs yi such that yi ∈ {−1,1}. Because the objects
can not be separated in current space A they will be
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lifted to higher space B and separated by hyperplane
defined as:

wT x+ b = 0

where w ∈ A and b ∈ B. This hyperplane determines
the boundary of classes; such that objects yi < 0 are
in one class; whereas yi > 0 are in another class.
Objects that lie one the boundary have zero values. The
objective of the hyperplane construction is to create
the maximum separation between two classes while
mimizing over-fitting with noisy objects. To avoid over-
fitting, the SVM introduces a slack variables ξi to allow
some objects to fall around the boundary. Finding
the trade off between the maximum boundary margin
and objects lie within the margin; a constant variable
C > 0 is introduced. Given these values, the objective
function of the SVM classifier is defined as:

min
w,b,ξi

=
‖w‖2

2
+C

n∑
i=1

ξi

This minimization problem will be solved using
Lagrange multipliers αi , the decision function rule for
this classifier is defined as :

f (x) = sgn(
n∑
i=1

αiyyK(x,xi ) + b)

The projection of the objects to higher space is
done by non-linear kernel function K(x,xi). The Kernel
function we will use is the Gaussian radial basis ”RBF”.

In the next section, we will present our warning
system algorithm using the one-SVM as a threshold
with our probability of infringement.

VI. Warning System and Results

The performance of our model and probability
methods can be found in [6]. Here we will show
the analysis of results of our classification model
after training and testing. Since we are given a set
of flight information ”objects” X from only one
class, we will use this set to train our classifier.
The number of objects to be trained is 27654 such
that Xtrain = [xdate,xtime,xcas]. Using the classifier
output range {−1,1} as our alerting threshold, we
look at the P (I). In algorithm 1, we show that If
P (I) ≥ 0.5 for some prediction X̂i with its information
X̂inf o = [xtime,xdate,xCAS ], the classifier ONSVM takes
it in as input and outputs its similarity yi with the
trained data. If the similarity is high we will warn the
ATC otherwise wait for the next time step.

By using the track in figure 1 above, for example and
its probability of infringement results in figure 2; we

Data: WarnSysFunc(Pt(I), X̂
inf o
t )

Result: Alert ATC or Not
1 if Pt(I) ≥ 0.5 then
2 yt ← ONSVM(X̂inf ot );
3 if yt ≥ 0 then
4 Alert ATC;
5 else
6 WarnSysFunc(Pt + 1(I), X̂inf ot+1 );
7 end
8 end

Algorithm 1: Warning system function

tested the classifier using a randomly generated test
set of size 1000. It contains times and dates with the
CAS number being fixed to the one infringed in figure
6. It shows that 38 were classified as similar to the
infringed ones. Figure 7 shows the classifier output of
similar objects which is the score of the classifier.

Fig. 7: Classifier output score of the similar objects in
the test set to that in the training set

After analysing these specific objects (times and
dates), we see in figure 8; were the majority of the
infringements occurred in the CAS shown in figure 2.
Therefore, if the aircraft in figure 6 was flying during
these times or months, our alerting system function
would trigger a warning to the ATC. Otherwise, it
would wait for the next prediction location at time
t + 1. Combining the classifier with the probability of
infringement can help reduce false alerts to the ATC.
Finally, we are looking to obtain more real VFR flight
tracks that did not infringe CAS to help us test the
reliability of the model combined. Since creating a ran-
dom synthetic tracks and flight information (ex:time,
date, CAS zones, weather) to measure the performance
of our model as a whole will not represent pilots
intentions, therefore; we will have to use real VFR
flight tracks.

VII. Conclusion

In our previous paper, we developed an aircraft
tracking tool with online learning called ”probabilistic
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(a) Time frequency

(b) Month frequency

Fig. 8: The time and month frequencies, where the
classifier produced them as similar given a random set

controlled airspace tool” which predicts 5-steps ahead
and provide the probability of their infringements
to controlled airspace zones at each time step. After
reviewing it in this paper, we introduced the factors
behind the infringements, after a survey conducted by
eurocontrol. We then presented the one-class support
vector machine and trained it on the data provided
which infringed CAS zones. We later, combined it with

PCAIT to enhance our warning system by developing
a function that uses the classifier’s score as threshold
to whether it warns ATC or wait given P (I) > 0.5. We
tested this classifier on a track that infringed specific
CAS zone but with unknown date and time. Therefore,
we generated a random set of times and dates along
with the known CAS number and applied it the clas-
sifier. It provided similarity to other infringed aircraft
information such that if this specific aircraft was to fly
during these times and dates, a warning will be issued
to the ATC. Our future work will focus on solving the
problem of multiple infringements in the same time.
We will investigate the possibility of using computa-
tional geometry methods to reroute heavy traffic safely
in the case of multiple infringements.
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